EQ IDA - Production	Page 1 of 2
LTR-587186	Return to Sharenet
TRY - 587187	
07/11/2017NSR IMS - PROJECT RECORD	
PROJECT#: 269550PERMIT#: 146912STATUS: PENDINGDISP CODE:RECEIVED: 05/22/2017PROJTYPE: INITIALAUTHTYPE: PBRISSUED DT:RENEWAL:ISSUED DT:ISSUED DT:ISSUED DT:	$\frac{1}{7-12-17}$
PROJECT ADMIN NAME: AUTHORIZE 7 STORAGE TANKS & BUTANE STORAGE & GAS BLENDING COMBUSTER THERMAL OXIDIZER PROJECT TECH NAME: CMG BROWNSVILLE II	EQUIPMENT &
Assigned Team: RR SECTION	
STAFF ASSIGNED TO PROJECT:GRUNNET, BROOKE- REVIEWR1_2 -AP INITIAL REVIEWMA, JOHN- PEERREVIEW -RR TEAM 2REYES, GUILLERMO- REVIEW ENG -RR TEAM 2	
ISSUED TO: CMG BROWNSVILLE II, LLC COMPANY NAME: CMG BROWNSVILLE II, LLC CUSTOMER REFERENCE NUMBER: CN605370378 REGULATED ENTITY/SITE INFORMATION REGULATED ENTITY NUMBER: RN107928129 ACCOUNT:	
PERMIT NAME: CMG BROWNSVILLE II REGULATED ENTITY LOCATION: 1000 FOUST ROAD REGION 15 - HARLINGEN NEAR CITY: BROWNSVILLE COUNTY: CAMERON	
CONTACT DATA	
CONTACT NAME: MR PETER SCHMARCONTACT ROLE: RESPONSIBLE OFFICIALJOB TITLE: EXECUTIVE VP OF OPERATIONSORGANIZATION: CMG BROWNSVILLE II LLCMAILING ADDRESS: PO BOX 797544, DALLAS, TX, 75379-7544PHONE: (918) 801-8911 Ext: 0EMAIL:PSCHMAR@CENTURIONTERMINALS.COM	
- CONTACT NAME: MR RALPH CHAIET CONTACT ROLE: TECHNICAL CONTACT JOB TITLE: SENIOR AIR COMPLIANCE SPECIALIST ORGANIZATION: WITT OBRIENS MAILING ADDRESS: 5818 CHEENA DR, HOUSTON, TX, 77096-5928 PHONE: (713) 283-7921 Ext: 0 FAX: (713) 721-8376 Ext: 0 EMAIL:RCHAIET@WITTOBRIENS.COM	RECEIVE
PROJECT NOTES:	JUL 2 5 2017 CENTRAL FILE ROOM

http://ida.tceq.texas.gov/ida/index.cfm?fuseaction=nsrproject_project_report&proj_id=269... 7/11/2017

TCEQ IDA - Production

05/23/2017 DFC 05/23/2017 NO APWL

PERMIT NOTES:

FEE: Reference **Fee Receipt Number** Amount Fee Receipt Date Fee Payment Type 289 100.00 CHECK TRACKING ELEMENTS: **TE Name** Start Date **Complete Date** APIRT RECEIVED PROJECT (DATE) 05/22/2017 APIRT TRANSFERRED PROJECT TO TECHNICAL STAFF (DATE) 05/23/2017 PROJECT RECEIVED BY ENGINEER (DATE) 05/26/2017 ENGINEER INITIAL REVIEW COMPLETED (DATE) 06/28/2017 PEER / MANAGER REVIEW PERIOD 06/28/2017 07/12/2017 CENTRAL REGISTRY UPDATED ENHANCED ADMINISTRATIVE OR APPLICATIONS REVIEW (EAR) **PROJECT RULES: Unit Desc** Rule Request On Approve Desc Туре Application FACILITIES (EMISSION LIMITATIONS) 106.261 -ADD Υ APPROVE FACILITIES (EMISSION AND DISTANCE 106.262 -Y ADD APPROVE LIMITATIONS) ROUTINE MAINTENANCE STARTUP AND 106.263 -ADD APPROVE Y SHUTDOWN OF FACIL ORGANIC AND INORGANIC LIQUID LOADING AND 106.472 -ADD Y APPROVE UNLOADING

106.476 -

106.478 -

Unit Desc	Rule Desc	Start Date
PROJECT ATTRIBU	ſES:	
Attributes		
CERT_PI_7		

PRESSURIZED TANKS OR TANKS VENTED TO

STORAGE TANK AND CHANGE OF SERVICE

CONTROL

PERMIT RULES: Unit Desc

PROJECT POINT

Value

ADD

ADD

Y

Y

End Date

APPROVE

APPROVE

			\bigcirc	
				Return to Sharenet
05/23/2017	-NSR IMS - PROJECT RE	CORD		
PROJECT#: 269550 RECEIVED: 05/22/2017 RENEWAI	PERMIT#: 146912 PROJTYPE: INITIAL	STATUS: PENDING AUTHTYPE: PBR	DISP CODE: ISSUED DT:	
PROJECT ADMIN NAME: THERMAL OXIDIZER PROJECT TECH NAME:	AUTHORIZE 7 STORAGE TAN	KS & BUTANE STORAGE & G/	AS BLENDING EQUIPMENT	& COMBUSTER
Assigned Team: RR SEC	TION			
STAFF ASSIGNED TO PI GRUNNET , BROOKE TEAM LEADER , RR	ROJECT: - REVIEWR1_2 - - REVIEW ENG -	AP INITIAL REVIEW RR SECTION		
CUSTOMER INFORMATI ISSUED TO: CMG BROW COMPANY NAME: CMG I CUSTOMER REFERENC	ON (OWNER/OPERATOR DATA /NSVILLE II, LLC BROWNSVILLE II, LLC E NUMBER: CN605370378	()		_
REGULATED ENTITY/SI REGULATED ENTITY NU PERMIT NAME: CMG BR REGULATED ENTITY LO REGION 15 - HARLINGE	TE INFORMATION MBER: RN107928129 OWNSVILLE II CATION: 1000 FOUST ROAD N NEAR CITY: BROW	ACCOUNT: NSVILLE COUNTY: CA	MERON	_
CONTACT NAME: MR PE JOB TITLE: EXECUTIVE MAILING ADDRESS: PO PHONE: (918) 801-8911 E EMAIL:PSCHMAR@CEN	TER SCHMAR CON VP OF OPERATIONS ORG, BOX 797544, DALLAS, TX, 753 Ext: 0 TURIONTERMINALS.COM	TACT ROLE: RESPONSIBLE O ANIZATION: CMG BROWNSVII 379-7544	OFFICIAL LLE II LLC	
CONTACT NAME: MR RA JOB TITLE: SENIOR AIR MAILING ADDRESS: 581 PHONE: (713) 283-7921 F FAX: (713) 721-8376 Ext: EMAIL:RCHAIET@WITTG	ALPH CHAIET COMPLIANCE SPECIALIST 8 CHEENA DR, HOUSTON, TX Ext: 0 0 DBRIENS.COM	CONTACT ROLE: TECHNICA ORGANIZATION: WITT OBRI 3, 77096-5928	L CONTACT ENS	
PROJECT NOTES: 05/23/2017 DFC 05/ PERMIT NOTES:	23/2017 NO APWL			_
FEE: Reference Fee R	eceipt Number Amoun	t Fee Receipt Date	Fee Payment Type	-

 \square

289	9 100.00				CHECK				
TRACKING ELEMENTS:									
TE Name			Start	Date C	omplete Date				
APIRT RECEIVED PRC	JECT (DATE)		05/22	2/2017					
APIRT TRANSFERRED	PROJECT TO TECHNICAL ST	AFF (DATE)	05/23	3/2017					
CENTRAL REGISTRY	JPDATED								
DEFICIENCY CYCLE									
ENGINEER INITIAL RE	VIEW COMPLETED (DATE)								
ENHANCED ADMINIST	RATIVE OR APPLICATIONS R	EVIEW (EAR)							
ENHANCED ADMINIST	RATIVE OR APPLICATIONS R	EVIEW (EAR)							
PEER / MANAGER REV	/IEW PERIOD								
PROJECT RECEIVED	BY ENGINEER (DATE)								
PROJECT RULES:						•			
Unit Desc			Rule Desc	Request Ty	pe On Applica	ation Approve			
FACILITIES (EMISSION	I LIMITATIONS)		106.261 -	ADD	Y	APPROVE			
FACILITIES (EMISSION	AND DISTANCE LIMITATION	6)	106.262 -	ADD	Y	APPROVE			
ROUTINE MAINTENAN	CE STARTUP AND SHUTDOW	/N OF FACIL	106.263 -	ADD	Y	APPROVE			
ORGANIC AND INORG	ANIC LIQUID LOADING AND U	JNLOADING	106.472 -	ADD	Y	APPROVE			
PRESSURIZED TANKS	OR TANKS VENTED TO CON	TROL	106.476 -	ADD	Y	APPROVE			
STORAGE TANK AND	CHANGE OF SERVICE		106.478 -	ADD	Y	APPROVE			
ENGINES AND TURBIN	IES		106.511 -	ADD	Y	APPROVE			
WATER AND WASTEW	ATER TREATMENT		106.532 -	ADD	Y	APPROVE			
PERMIT RULES:									
Unit Desc	Rule Desc	Start Date		End Dat	e				

PROJECT ATTRIBUTES:

Attributes PROJECT POINT Value

Guillermo Reyes

From: Sent: To: Subject: Attachments: Ralph Chaiet <RChaiet@wittobriens.com> Friday, June 23, 2017 7:05 AM Guillermo Reyes Centurion Brownsville-Reflecting the Changes 20170623 Centurion Brownsville Terminal PBR TABLE 1(a).doc; 20170623 MTBE Loading 262 Centurion BROWNSVILLE Marine PBR Hourly and Annual NOx CO PM Emissions.xlsx

This morning

I have updated the NOx, CO and PM short term and annual emissions on the Table 1(a) (6/23/2017) based on the changes that we have made including the lowering the flow rate to the vapor combustor (VC-1).

I have updated the emissions calculations for the NOx, CO and PM along with the 106.262 Emax review including Gasoline.

Ralph

Ralph G. Chaiet P.E. | Senior Air Compliance Specialist

Witt O'Brien's 5718 Cheena Dr. Houston, TX 77096

Direct +1 713-283-7921 Cell +1 832-483-7299

Thermal	Oxidize	r	106.261 8	k 106.262		7	
Hourly Emis	sions	2785	bph	2525+260 = 2	2785 bph		
		Flow to Comb	ustor	%		Heat Generate	d
		LB/hr	BTU/lb	Combustion		BTU/hr	
	VOC	318	19000	99.9		6,035,958	
SCF	Supp Fuel	0.0	1000	100		0	
Process Flow	/	15637.7	SCFH				
Natural Gas	Flow	0.0	SCFH		Total	6,035,958	BTU/hr
							Loading VOC
							294
NOx Factor		0.07	lb/10^ 6 BTU]			27
CO Factor		0.004	Ib/10^ 6 BTU	1			321
PM Factor		0.0076	lb/10^ 6 BTU	1			317.79
HOURLY		lb/hr		ſ	PBR Limit		
NOx Genera	ted	0.423		261	6	lb/hr]
CO Generat	ed	0.024		261	6	lb/hr	
PM2.5 Gen	erated	0.046		262	L/K	Emax=0.214]
VOC Gasolin	e	5.97*		262	L/K	Emax=6.0]
	PM2.5				Gasoline		
L for PM 2.5	=	3.000	mg/m3	L for Gasoline	6 =	800.000	mg/m3
Distance to	receptor	2000	ft	Distance to r	eceptor	2000	ft
Distance	K value	14		Distance	K value	14	
Emax = L/K		0.214	lb/hr	Emax = L/K		6.000	lb/hr
				* Includes TO), Uncollect	ed and Piping F	ugitives
	MTBE						
L C AATOF		45.000	(1)	7			

NOx, CO and PM Emissions Generated During Marine Loading

	MIBE				
L for MTBE	z	45.000	(L) mg/m3		
Distance to	receptor	2000	ft		
Distance	K value	14			
Emax = L/K		3.214	lb/hr		

Annual Emis	sions	10,000,000	bbls/yr				
		Flow to Comb	ustor	%		ed	
		LB/yr	BTU/lb	Combustion		BTU/yr	
	VOC	849274	19000	99.9		2.E+10	
SCF	Supp Fuel	56,149,733	1000	100		6.E+10	
Process Flow	,	56149732.6	SCFY				
Natural Gas	Flow	11229946.5	SCFY		Total	7.23.E+10	BTU/yr
Natural Gas	flow = 20%	of Process Gas	flow	_			Loading VOC
NOx Factor		0.07	lb/10^ 6 BTU				776779
CO Factor		0.004	lb/10^ 6 BTU]			81073
PM Factor		0.0076	lb/10^ 6 BTU]			857852
ANNUAL		lb/yr	tons/yr				849273.48
NOx Generated		5058.886	2.529				
CO Generated		289.079	0.145]			
PM2.5 Gen	erated	549.250	0.275				
VOC Gasolin	e	9580*	4.79	Emax = 262		5.00	tons/yr

* Includes TO, Uncollected and Piping Fugitives

Table 1(a) Emission Point Summary

Date: June 23, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville		Customer Reference No.: Not yet assigned

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

1. Emission Point			2. Component or Air Contaminant Name	3. Air Contaminant Emission Rate			
(A) EPN	(B) FIN	(C) Name		(A) Pound Per Hour	(B) TPY		
Т-150-1	T-150-1	Tank 150-1	VOC	0.548	1.83		
Т-150-5	T-150-5	Tank 150-5	VOC	0.548	1.83		
Г-150-9	T-150-9	Tank 150-9	VOC	0.548	1.83		
Г-250-1	T-250-1	Tank 250-1	VOC	2.15	3.95		
Г-250-2	T-250-2	Tank 250-2	VOC	2.15	3.95		
Г-250-3	T-250-3	Tank 250-3	VOC	1.38	0.33		
Г-250-4	T-250-4	Tank 250-4	VOC	1.38	0.16		
Г-250-5	T-250-5	Tank 250-5	VOC	1.38	0.16		
Г-250-6	T-250-6	Tank 250-6	VOC	1.38	0.16		

EPN = Emission Point Number

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a) This form is for use by sources subject to air quality permit requirements and may be revised periodically. (APDG 5178 v5)

Table 1(a) Emission Point Summary

Date:	Permit No.:	Regulated Entity No.:
Area Name: Centurion Brownville		Customer Reference No.:

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

AIR CO	NTAMIN	ANT DATA				EMISSION POINT DISCHARGE PARAMETERS								
1. Emis	ssion Poin	it	4. U	TM Coordin	ates of	Source								
			E	mission Point	t	5.	Building 6	6. Height	7. Stack Exi	t Data		8. Fugiti	ves	
(A) EPN	(B) FIN	(C) NAME	Zone	East (Meters)	North (Meters)		Height (Ft.)	Above Ground (Ft.)	(A) Diameter (Ft.)	(B) Velocity (FPS)	(C) Temperature (°F)	(A) Length (Ft.)	(B) Width (Ft.)	(C) Axis Degrees
	· · · · · · · · · · · · · · · · · · ·													
						<u> </u>								

EPN = Emission Point Number FIN = Facility Identification Number TCEQ - 10153 (Revised 04/08) Table 1(a) This form is for use by sources subject to air quality permit requirements and may be revised periodically. (APDG 5178 v5)

TCEQ

Table 1(a) Emission Point Summary

Date: June 23, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville	Customer Reference No.: Not yet assigned	

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

AIR CONTAMINANT DATA						
4. Emission Point			5. Component or Air Contaminant Name	6. Air Contaminant Emission Rate		
(A) EPN	(B) FIN	(C) Name	-	(A) Pound Per Hour	(B) TPY	
Fug	Fug	Piping Comp Fug	VOC	0.43	1.86	
Marine Load	Marine Load	Uncontrolled Load	VOC	5.88	1.68	
VC-1	Marine Load	Marine Vapor Combustor	VOC	3.2	0.42	
VC-1	Marine Load	Marine Vapor Combustor	NOx	0.423	2.529	
VC-1	Marine Load	Marine Vapor Combustor	СО	0.024	0.145	
VC-1	Marine Load	Marine Vapor Combustor	PM/PM10/PM2.5	0.046	0.275	
Uncollected VOC	Marine Load	Uncollected VOC	VOC	3.2	4.29	
MSS Control	Tank Degassing	Portable Control	VOC	0.67	0.08	
MSS Control	Tank Degassing	Portable Control	NOx	0.68	0.016	
MSS Control	Tank Degassing	Portable Control	СО	0.52	0.013	

EPN = Emission Point Number

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a) This form is for use by sources subject to air quality permit requirements and

may be revised periodically. (APDG 5178 v5)

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Table 1(a) Emission Point Summary

Date:	Permit No.:	Regulated Entity No.:
Area Name:		Customer Reference No.:

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

AIR CO	NTAMIN	ANT DATA				EMISSION POINT DISCHARGE PARAMETERS									
2. Emi	ssion Poin	nt	5. U	TM Coordin	ates of		Source								
			E	mission Point	t	9.	Building	10.	Height	11. Stack Exi	t Data		12. Fugiti	ves	
(A) EPN	(B) FIN	(C) NAME	Zone	East (Meters)	North (Meters)		Height (Ft.)		Above Ground (Ft.)	(A) Diameter (Ft.)	(B) Velocity (FPS)	(C) Temperatur (°F)	e (A) Length (Ft.)	(B) Width (Ft.)	(C) Axis Degrees
					_										
						_									
					_										
					· · · · · · · · · · · · · · · · · · ·	┢		-						<u> </u>	┼───
			-					-		· · ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>	+

EPN = Emission Point Number

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a)

This form is for use by sources subject to air quality permit requirements and

may be revised periodically. (APDG 5178 v5)

Table 1(a) Emission Point Summary

Date: June 23, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville		Customer Reference No.: Not yet assigned

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

AIR CONTAMINANT DATA						
7. Emission Point			8. Component or Air Contaminant Name	9. Air Contaminant E		
(A) EPN	(B) FIN	(C) Name		(A) Pound Per Hour	(B) TPY	
WTTK-1	WTTK-1	Water Collection Tank	VOC	0.116	0.507	

EPN = Emission Point Number

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a) This form is for use by sources subject to air quality permit requirements and may be revised periodically. (APDG 5178 v5)

Table 1(a) Emission Point Summary

Date: May 2, 2	2017	Permit N	D.:	Regulated Entity No.: Not yet assigned			
Area Name: C	Centurion Brownsvi	lle	Customer Reference No.: N	ot yet assigned			
Review of appl	ications and issuance	e of permits will be ex	pedited by supplying all necessary information reques	ted on this Table.	····		
			AIR CONTAMINANT DATA				
10. Emission	Point		11. Component or Air Contaminant Name	12. Air Contaminant Emission Rate			
(A) EPN	(B) FIN	(C) Name		(A) Pound Per Hour	(В) ТРҮ		
			· · · · · · · · · · · · · · · · · · ·				
	-						

EPN = Emission Point Number

FIN = Facility Identification Number

Guillermo Reyes

From:	Ralph Chaiet <rchaiet@wittobriens.com></rchaiet@wittobriens.com>					
Sent:	Thursday, June 22, 2017 6:57 PM					
То:	Guillermo Reyes					
Subject:	Fugitive emissions speciation and Gasoline Maximum					
Attachments:	20170622 FUG + 99% 95F PLUS 10% MTBE CENTURION Annual and Hourly Rate					
	Gasoline to Seagoing Barge Loading w TO Control.xlsx; 20170622 BUTANE SPECIATION CENTURION BROWNSVILLE PIPING FUGITIVES EMISSIONS.xlsx; 20170622 GASOLINE SPECIATION CENTURION BROWNSVILLE PIPING FUGITIVES EMISSIONS.xlsx					

Guillermo,

I have prepared a calculation sheet for piping component fugitive emissions for Butane and for Gasoline

The gasoline amounted to 0.12 lb/hr

I have therefore reduced the gasoline fill rate just a bit so that the sum of the hourly Collection loss, the TO emissions and the Piping Components does not exceed 6 b/hr (5.85+0.12 = 5.97).

The annual quantity of gasoline including the Collection loss, the TO emissions and the Piping Components does not exceed 5 tons/yr (4.27 +0.52=4.79)

Thank you for your patience.

Ralph

Ralph G. Chaiet P.E. | Senior Air Compliance Specialist

Witt O'Brien's 5718 Cheena Dr. Houston, TX 77096

Direct +1 713-283-7921 Cell +1 832-483-7299

7. If an applicant decides to monitor their flanges using an organic vapor analyzer (OVA) at the same leak definition of valves, then valve credit may be used instead of the 30%. If this option is chosen, in addition to the OVA monitoring the company shall conti the weekly physical inspections.

ſ		FUCITI	/E EMISSIC	ON CALCULA	TIONS	DATE:	6/28/2017
		rounn		Sit Checceli	110115	Diffe	0.2012017
ł	BISS Cold Economy States 500					JOB NO:	78261
ļ	Houston, Texas 77017						
	REFERENCE:	TCEQ FACTO	RS 1/10/1996		-		
	CONTROL PLAN:	SOCMI W/O C	2. 28VHP				
Al	DDITIONAL FACTORS:						
	CLIENT:	CENTURION	BROWNSVILL	E TERMINALS			
	LOCATION:	Brownsville TX	C C				
	UNIT:	Gasoline Storag	ge and Loading	Components			
		PROCESS	VOC			NO. OF	TOTAL
	EMISSION	STREAM	SOURCE	CONTROL		EMISSION	EMISSION
	SOURCE	TYPE	LBS/HR	EFFICIENCY	NOTES	SOURCES	LBS/HR
		R	0.0089	97%		36	0.00961
	VAL VEO	C	0.0035	97%		41	0.00431
		D	0.0007	0%		0	0.00000
		c	0.0297	050/		А	0.02216
	PUMPS SEALS	C D	0.0386	85%		4	0.00000
		D	0.0101	070		-	
	COMPRESSOR SEALS	В	0.5027	85%		1	0.07541
	RELIEF VALVES	В	0.2293	97%		0	0.00000
	FLANGES	в	0.0029	97%	7	74	0.00644
		С	0.0005	97%	7	51	0.00077
		D	0.00007	97%	7	0	0.00000
	OPEN ENDED LINES	Α	0.0040	97%			0.00000
	SAMPLE CONNECTION	5 A	0.0330	97%		0	0.00000
	PROCESS STREAM LEG	END		1001		EMISSION TOT	ALS
	A All Streems					I BS/HR	0 11969
	B Gas/Vapor Streams					LBS/DAY	2.87244
	C Light Liquid & Gas/Li	quid Streams				LBS/YR	1048.44060
	D Heavy Liquid Streams		•			TONS/YR	0.52422
	Light Liquid > 0.044 PSIA	A VP @ 68°F			-	TONS / 1 YEAR	0.52422
	<u></u>	MOLFR	COMPONEN	TT T	Lbs/Hr	Lbs/Day	Ton/Yr
		1			0.119685	2.87244	0.5242203
		0			0	0	0
ĺ		ů 0			0	0	0
					0 11069F	2 87244	0 5242203
		1			0.119083	2.0/244	0.3242203
Γ	Fugitive Emission Factor N	lotes:	EDA 452/D 02	026 June 1002 D-		nt SOCMI w/o C2	and w/ C2 which ar
	1. racions are taken if om I	BEA DOCUMENT,	LI A-433/K-93-	-020, June 1993, Pa	150 2-10, CXCC	pr 5001411 W/0 C2	und with CA without al
-	Control Efficiency Notes			· · · · ·			
	7. If an applicant decides	o monitor their f	langes using an	organic vapor anal	yzer (OVA) at	the same leak defi	inition of valves, the
	valve credit may be use	d instead of the	30%. If this opt	tion is chosen, in ad	ldition to the C	VA monitoring the	e company shall con
	the weekly physical ins	pections.					

.

()

Guillermo Reyes

From:
Sent:
То:
Cc:
Subject:
Attachments:

Ralph Chaiet <RChaiet@wittobriens.com> Tuesday, June 20, 2017 8:38 AM Guillermo Reyes Peter Schmar CMG Brownsville PBR 20170620 Centurion Reply to TCEQ.pdf

Mr. Guillermo Reyes P.E. Permit Engineer, TCEQ Project CMG Brownsville LLC (Centurion) PBR

Corrections and Additional Information supporting the submittal of the PBR for Construction and Operations of the Gasoline Storage Facility in Brownsville. Response to your e-mail to Mr. Peter Schmar dated 6/16/2017

- 1. We have updated the calculations to reflect the use of 99% Vapor Collection Efficiency for marine loading operations. The Table 1(a) has been updated to reflect the emissions changes.
- 2. Centurion will include on-line monitors for Oxygen or Carbon Monoxide. Centurion will also perform the stack testing as required.

In addition, Centurion has made a minor change to the Description of this project. Reformate formerly stored in tank T-150-1 will now be stored in tank T-250-3. MTBE (a gasoline blendstock) will now be stored in tank T-150-1. Diesel will be stored in two 250 M bbl tanks instead of three.

Fugitive emissions have been recalculated to reflect the operations of the blending of Butane.

Attached to this reply please find supporting documents reflecting this change as of 6/20/2017.

Ralph G. Chaiet P.E. | Senior Air Compliance Specialist

Witt O'Brien's 5718 Cheena Dr. Houston, TX 77096

Direct +1 713-283-7921 Cell +1 832-483-7299 Mr. Guillermo Reyes P.E.

Permit Engineer, TCEQ

Project CMG Brownsville LLC (Centurion) PBR

Corrections and Additional Information supporting the submittal of the PBR for Construction and Operations of the Gasoline Storage Facility in Brownsville.

Response to your e-mail to Mr. Peter Schmar dated 6/16/2017

- 1. We have updated the calculations to reflect the use of 99% Vapor Collection Efficiency for marine loading operations. The Table 1(a) has been updated to reflect the emissions changes.
- 2. Centurion will include on-line monitors for Oxygen or Carbon Monoxide. Centurion will also perform the stack testing as required.

In addition, Centurion has made a minor change to the Description of this project. Reformate formerly stored in the tank T-150-1 will now be stored in tank T-250-3. MTBE (a gasoline blendstock) will now be stored in tank T-150-1. Diesel will be stored in two 250 M bbl tanks instead of three.

Fugitive emissions have been recalculated to reflect the operations of the blending of Butane.

Attached to this reply please find supporting documents reflecting this change as of 6/20/2017.

Oph Chaut 713-283-7921

PROCESS DESCRIPTION

Gasoline blending stock including MTBE and Natural Gas Condensate will arrive primarily by marine vessels in to three (3) 150 M bbl IFR storage tanks. Reformate will be stored in one (1) 250 M bbl IFR storage tank.

According to a prescribed receipt, the blending stocks will be transferred into two (2) 250 M bbl IFR storage tanks. Additional MTBE and Butane will be injected into the blended gasoline from the on-site MTBE tank and the Butane high pressure storage tanks.

The finished gasoline will be pumped to awaiting marine vessels. A Vapor Combustor will destroy the VOC emissions generated during the gasoline marine loading operations.

Additionally, Diesel Fuel will arrive by marine vessels and stored in three (3) 250 M bbl IFR tanks. The Diesel Fuel will be pumped out to marine vessels. There is no control of the marine loading emissions.

Description of Storage tanks to Be Constructed and Operated

Tanks T-250-1 and T-250-2 (identical) will be IFR tanks with a Diameter of 224 ft and a Height of 48 ft. The nominal capacity is 250,000 bbls. Gasoline will be stored in these tanks under 106.478.

Emissions have been calculated using Tanks 4.09.

Tanks T-250-4, T-250-5 and T-250-6 (identical) will be IFR tanks with a Diameter of 224 ft and a Height of 48 ft. The nominal capacity is 250,000 bbls. Diesel Fuel will be stored in these tanks under 106.472.

Tank T-250-3 will be IFR tanks with a Diameter of 225 ft and a Height of 48 ft. The nominal capacity is 250,000 bbls. Reformate (Gasoline Blendstock) will be stored in this tanks under 106.478.

Emissions have been calculated using Tanks 4.09.

Tanks T-150-1, T-150-5 and T-150-9 (identical) will be IFR tanks with a Diameter of 168 ft and a Height of 48 ft. The nominal capacity is 150,000 bbls. Gasoline Blendstocks will be stored in these tanks under 106.478. Specifically T-150-1 will store MTBE.

Since these tanks may store a variety of Gasoline Blendstocks from the refinery processes, emissions using Tanks 4.09 was determined. Centurion chooses to assign the emissions based on the highest vapor pressure blendstock that they anticipate storing.

Table 1(a) Emission Point Summary

Date: June 19, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville		Customer Reference No.: Not yet assigned

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

AIR CONTAMINANT DATA						
Point	, in a	2. Component or Air Contaminant Name	3. Air Contaminant Emission Rate			
(B) FIN (C) Name		-	(A) Pound Per Hour	(B) TPY		
T-150-1	Tank 150-1	VOC	0.548	1.83		
	Tank 150-5	VOC	0.548	1.83		
	Tank 150-9	VOC	0.548	1.83		
	Tank 250-1	VOC	2.15	3.95		
	Tank 250-2	VOC	2.15	3.95		
	Tank 250-3	VOC	1.38	0.33		
T-250-4	Tank 250-4	VOC	1.38	0.16		
	Tank 250-5	VOC	1.38	0.16		
	Tank 250-6	VOC	1.38	0.16		
	Point (B) FIN T-150-1 T-150-5 T-150-9 T-250-1 T-250-2 T-250-3 T-250-4 T-250-5 T-250-6	(B) FIN (C) Name T-150-1 Tank 150-1 T-150-5 Tank 150-5 T-150-9 Tank 150-9 T-150-9 Tank 150-9 T-250-1 Tank 250-1 T-250-2 Tank 250-2 T-250-3 Tank 250-3 T-250-4 Tank 250-4 T-250-5 Tank 250-5 T-250-6 Tank 250-6	AIR CONTAMINANT DATA Point 2. Component or Air Contaminant Name (B) FIN (C) Name T-150-1 Tark 150-1 T-150-5 Tark 150-5 T-150-9 Tark 150-9 T-250-1 Tark 250-1 T-250-2 Tark 250-1 T-250-3 Tark 250-2 T-250-4 Tark 250-3 T-250-5 Tark 250-3 T-250-6 Tark 250-6	AIR CONTAMINANT DATA Point 2. Component or Air Contaminant Name 3. Air Contaminant Er (B) FIN (C) Name (A) Pound Per Hour T-150-1 Tank 150-1 VOC 0.548 T-150-5 Tank 150-5 VOC 0.548 T-150-9 Tank 150-9 VOC 0.548 T-150-9 Tank 150-9 VOC 0.548 T-250-1 Tank 250-1 VOC 2.15 T-250-2 Tank 250-2 VOC 2.15 T-250-3 Tank 250-3 VOC 1.38 T-250-4 Tank 250-4 VOC 1.38 T-250-5 Tank 250-5 VOC 1.38 T-250-6 Tank 250-6 VOC 1.38		

EPN = Emission Point Number

FIN = Facility Identification Number

Table 1(a) Emission Point Summary

Date: June 19, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville		Customer Reference No.: Not yet assigned

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

AIR CONTAMINANT DATA						
4. Emission Point			5. Component or Air Contaminant Name	6. Air Contaminant Emission Rate		
(A) EPN	(B) FIN	(C) Name		(A) Pound Per Hour	(B) TPY	
Fug	Fug	Piping Comp Fug	VOC	0.43	1.86	
Marine Load	Marine Load	Uncontrolled Load	VOC	5.88	1.68	
VC-1	Marine Load	Marine Vapor	VOC	0.50	0.50	
VC-1	Marine Load	Marine Vapor	NOx	0.78	2.647	
VC-1	Marine Load	Marine Vapor	СО	0.044	0.151	
VC-1	Marine Load	Marine Vapor	PM/PM10/PM2.5	0.085	0.287	
Uncollected VOC	Marine Load	Uncollected VOC	VOC	5.9	5.04	
MSS Control	Tank Degassing	Portable Control	VOC	0.67	0.08	
MSS Control	Tank Degassing	Portable Control	NOx	0.68	0.016	
MSS Control	Tank Degassing	Portable Control	СО	0.52	0.013	

EPN = Emission Point Number

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a) This form is for use by sources subject to air quality permit requirements and may be revised periodically. (APDG 5178 v5)

Table 1(a) Emission Point Summary

Date: June 19,	2017	Permit No.:		Regulated Entity No.: Not yet assigned			
Area Name: Centurion Brownsville				Customer Reference No.: Not yet assigned			
	the second interview of normita will be expedited by supplying all necessary information requested on this Table.						
keview of appir		of permits will be exped	AIR CONTAMINANT DATA				
7. Emission	Point		8. Component or Air Contaminant Name	9. Air Contaminant Er	nission Rate		
(A) EPN	(B) FIN	(C) Name		(A) Pound Per Hour	(B) TPY		
WTTK-I	WTTK-I	Water Collection Tank	VOC	0.116	0.507		

EPN = Emission Point Number

FIN = Facility Identification Number

INTERNAL FLOATING ROOF STORAGE TANK SUMMARY Tank T-250-4, T-250-5 and T-250-6 will be built exactly the same as T-250-3

The I I I will differ a separate form for each to	ink).
1. Tank Taenification (Use a separate form for each te	
1. Applicant's Name: CWO Drownsvine in EEC	inates): 663739 E 2871955 N
2. Location (indicate on piot piun and provide coord	on Point No. T-250-3
3. Tank No. <u>T-250-3</u> <u>4</u> . Emissi	
5. FIN <u>1 ank 1-250-3</u>	Relocation [] Change of Service []
6. Status: New tank [X] Altered tank []	
Previous permit or exemption number(s)	
U. Truck Dissignal Changestanistics	
1. Tank Physical Characteristics	
1. Dimensions 48 ft	
a. Shell Height : 48 11.	
b. Diameter: <u>224</u> II.	BIS gallons
c. Nominal Capacity of Talk Volume. 250 M D	<u>DDD</u> Guitenal
d. Turnovers per year: 24	0 BBI S/YR gallons/year.
e. Net Inroughpul: <u>ESTIMATED 0,000,00</u>	gallons/hour (Use the higher of the maximum fill
f. Maximum Pumping Rate: 28,000 <u>BBE/IIR</u>	guilons noun (coo intengenera)
rate or maximum withdrawai rate.)	
g. Self-Supporting Root ? Tes [] NO [X]	
h. Number of Columns: 31	
i. Column Diameter: 0.7 II.	
2. Shell/Roof and Paint Characteristics	an Rust [] Gunite Lining []
a. Shell Condition : Light Rust [X] Den	A luminum/Sneeular [] Aluminum/Diffuse []
b. Shell Color/Shade : White/White [X]	Aluminum/Specular [] Aluminum Britade []
Gray/Light [] Gray/Medium [] Red/I	
c. Shell Condition : Good [X] Pool	[]
d. Roof Color/Shade : White/White [X]	Aluminum/Specular [] Aluminum/Diffuse []
Gray/Light [] Gray/Medium [] Red/	
e. Roof Condition : Good [X] Poor	τ []
3. Rim-Seal System	the state [] Machanical Shoe [Y]
a. Primary Seal: Vapor-mounted [] Liq	uid-mounted [] Mechanical Shoe [X]
b. Secondary Seal : Yes [X] No []	
4. Deck Characteristics	
a. Deck Type: Bolted [] Welded [X]	
b. Deck Construction (Bolted Tanks Only):	
Continuous Sheet Construction 5	ft. wide
Continuous Sheet Construction 6	ft. wide
Continuous Sheet Construction 7	ft. wide
Rectangular Panel Construction 5	X 7.5 ft. wide []
Rectangular Panel Construction 5	X 12 ft. wide []
c. Deck Seam Length (Bolted Tanks Only):	ft.
5. Roof Fitting Loss Factor:545 lb-mo	le/year
Based upon Typical [] Controlled [] or	Actual [X] fittings
Complete Section IV, Fittings Information, to r	ecord fittings count used to calculate the roof fitting loss
factor.	

Table 7(d)	INTERNAL FLOATING ROOF TANK SUMMARY
Page 2	

(]

Permi	it No Tank No. T-250-3	
III. Lic	uid Properties of Stored Material See Tanks 4.09 for Details	
1.	Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude Oils []
2.	Single or Multi-Component Liquid	
	Single []Complete Section III.3	
	Multiple [] Complete Section III.4	
3.	Single Component Information	
	a. Chemical Name: Reformate	
	b. CAS Number:	
	d. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
	e. Liquid Molecular Weight:	
4.	Multiple Component Information	
	a. Mixture Name: Heavy Condensate	······
	b. Average Liquid Surface Temperature:°F.	
	c. Minimum Liquid Surface Temperature: °F.	
	d. Maximum Liquid Surface Temperature: °F.	
	e. True Vapor Pressure at Average Liquid Surface Temperature:	_ psia.
	f. True Vapor Pressure at Minimum Liquid Surface Temperature:	_ psia.
	g. True Vapor Pressure at Maximum Liquid Surface Temperature:	_ psia.
	h. Liquid Molecular Weight:	

. Chemical Components Information

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight(typical	Molecular Weight

Permit No.Tank No.T-250-3IV.Fittings InformationSEE TANKS 4.09 PRINTOUT FOR DETAILS

				Quantity
Fitting Type	Fitting Status	Quantity	KF	
Access Hatch (24-in. Diam.)	Bolted Cover, Gasketed		1.6	
Access Hatch (24-in. Diam.)	Unbolted Cover, Gasketed		11	
Access Hatch (24-in. Diam.)	Unbolted Cover, Ungasketed		25	
Automatic Gauge Float Well	Bolted Cover, Gasketed		2.8	
Automatic Gauge Float Well	Unbolted Cover, Gasketed		15	
Automatic Gauge Float Well	Unbolted Cover, Ungasketed		28	
Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Gask.		33	
.Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Ungask.		47	
Column Well (24-in.Diam.)	Pipe ColFlex. Fabric Sleeve Seal		10	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Gask.		25	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Ungask.		32	
Ladder Well (36-in. Diam.)	Sliding Cover, Ungasketed		76	
Ladder Well (36-in. Diam.)	Sliding Cover, Gasketed		56	
Roof Leg or Hanger Well	Adjustable		7.9	
Roof Leg or Hanger Well	Fixed		0	
Sample Pipe or Well (24-in. Diam.)	Slit Fabric Seal 10% Open		12	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Gask.		44	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Ungask.		57	
Stub Drain (1-in, Diam.)			1.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Gask.		6.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Ungask.		0.9	

INTERNAL FLOATING ROOF STORAGE TANK SUMMARY Tank T-250-5 and T-250-6 will be built exactly the same as T-250-4

I.	Tank Identification (Use a separate form for each tank).
	1. Applicant's Name: CMG Brownsville II LLC
	2. Location (indicate on plot plan and provide coordinates): 663841 E 28/1960 N
	3. Tank No. 1-250-4 4. Emission Point No. 1-250-4 5. FIN Tank T 250.4
	6 Status: New tank [Y] Altered tank [] Pelocation [] Change of Service []
	Previous permit or exemption number(s)
II.	Tank Physical Characteristics
	1. Dimensions
	a. Shell Height : <u>48</u> ft.
	b. Diameter: <u>224</u> ft.
	c. Nominal Capacity or Tank Volume: <u>250 M BBLS</u> gallons.
	d. Turnovers per year:24
	e. Net Throughput : <u>ESTIMATED 6,000,000 BBLS/YR</u> gallons/year.
	f. Maximum Pumping Rate: 28,000 <u>BBL/HR</u> gallons/hour. (Use the higher of the maximum fill
	rate or maximum withdrawal rate.)
	g. Self-Supporting Roof ? Yes [] No [X]
	n. Number of Columns: 31
	1. Column Diameter: <u>0.7</u> Π.
	2. Shell Condition: Light Dust [V] Dance Dust [] Gunite Lining []
	a. Sheh Color/Shade : White/White [X] Aluminum/Snecular [] Aluminum/Diffuse []
	Grav/Light [] Grav/Medium [] Red/Primer [] Other [] (Describe)
	c. Shell Condition : Good [X] Poor []
	d. Roof Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
	Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)
	e. Roof Condition : Good [X] Poor []
	3. Rim-Seal System
	a. Primary Seal: Vapor-mounted [] Liquid-mounted [] Mechanical Shoe [X]
	b. Secondary Seal : Yes [X] No []
	4. Deck Characteristics
	a. Deck Type: Bolted [] Welded [X]
	b. Deck Construction (Bolted Tanks Only):
	Continuous Sheet Construction 5 ft. wide
	Continuous Sheet Construction 6 ft. wide []
	Continuous Sheet Construction / It. wide []
	Rectangular Panel Construction 5 X 1.2 ft wide []
	C Deck Seam Length (<i>Rolted Tanks Only</i>):
	5. Roof Fitting Loss Factor: 545 lb-mole/year
	Based upon Typical [] Controlled [] or Actual [X] fittings
	Complete Section IV, Fittings Information. to record fittings count used to calculate the roof fitting loss
	factor.

Table 7(d)	INTERNAL FLOATING ROOF TANK SUMMARY
Page 2	

ζ....

Perr	mit No Tank No. T-250-4	
III. L	iquid Properties of Stored Material See Tanks 4.09 for Details	
1	1. Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude (Dils []
2	2. Single or Multi-Component Liquid	
	Single []Complete Section III.3	
	Multiple [] Complete Section III.4	
	3. Single Component Information	
	a. Chemical Name: Diesel Fuel	
	b. CAS Number:	
	d. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
	e. Liquid Molecular Weight:	
	4. Multiple Component Information	
	a. Mixture Name: Heavy Condensate	
	b. Average Liquid Surface Temperature:°F.	
	c. Minimum Liquid Surface Temperature: °F.	
	d. Maximum Liquid Surface Temperature: °F.	
	e. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
	f. True Vapor Pressure at Minimum Liquid Surface Temperature:	psia.
	g. True Vapor Pressure at Maximum Liquid Surface Temperature:	psia.
	h. Liquid Molecular Weight:	

. Chemical Components Information

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight(typical	Molecular Weight

Permit No.Tank No.T-250-4IV.Fittings InformationSEE TANKS 4.09 PRINTOUT FOR DETAILS

				Quantity
Fitting Type	Fitting Status	Quantity	Kf	X K _F
Access Hatch (24-in. Diam.)	Bolted Cover, Gasketed		1.6	
Access Hatch (24-in. Diam.)	Unbolted Cover, Gasketed		11	
Access Hatch (24-in. Diam.)	Unbolted Cover, Ungasketed		25	
Automatic Gauge Float Well	Bolted Cover, Gasketed		2.8	
Automatic Gauge Float Well	Unbolted Cover, Gasketed		15	
Automatic Gauge Float Well	Unbolted Cover, Ungasketed		28	
Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Gask.		33	
.Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Ungask.		47	
Column Well (24-in.Diam.)	Pipe ColFlex. Fabric Sleeve Seal		10	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Gask.		25	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Ungask.		32	
Ladder Well (36-in. Diam.)	Sliding Cover, Ungasketed		76	
Ladder Well (36-in. Diam.)	Sliding Cover, Gasketed		56	
Roof Leg or Hanger Well	Adjustable		7.9	
Roof Leg or Hanger Well	Fixed		0	
Sample Pipe or Well (24-in. Diam.)	Slit Fabric Seal 10% Open		12	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Gask.		44	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Ungask.		57	
Stub Drain (1-in. Diam.)			1.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Gask.		6.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Ungask.		0.9	

Centurion Brownsville Seagoing Barge/Ship Loading Calculation

Blended Gasoline high 11.5 RVP Thermal Oxidizer designed for 99.9% DRE

Loading Seagoing	Equation Annual g Barge/Ship	Emissions Inerted Only
LI =	12.46 x ((Q x 42)/1000) x M	1W x VP x S/(T+460)
Q = MW = VP S = T =	9,000,000 bbls/yr 65 lb/lb-mole 8.1 psia 0.2 76 F	loading rate 76 F Annual Average Sat Factor for Seagoing Barge/Ship loading Annual Average product storage temperature
LI =	925281 lb/yr 462.64 tons/yr	

Collection Efficiency 99.0% per TCEQ

Collection Loss	9252 81 lb/vr
Collection Loss	4.63 tons/yr
T.O. DRE 99.9%	916 lb/yr
	0.46 tons/yr
Total VOC	5.08 tons/yr

Blended Gasoline high 11.5 RVP Thermal Oxidizer designed for 99.9% DRE

Loading Equation Hourly Emissions

Seagoing Barge/Ship Inerted

LI =

12.46 x ((Q x 42)/1000) x MW x VP x S/(T+460)

Q =	4,900 bbls/hr 65 lb/lb-mole	loading rate
VP S -	8.9 psia 0.2	at 87 F Maximum Daily Sat Factor for Seagoing Barge loading
Τ=	87 F	Maximum product storage temperature

Ll = 542 lb/hr

Collection Efficiency 99	.0% per TCEQ
	5.4 lb/hr
	·
T.O. DRE 99.9%	0.5 lb/hr

T.O. DRE 99.9%	0.5 10/11
Total VOC	6.0 lb/hr

Centurion Brownsville Seagoing Barge/Ship Loading Calculation

10% MTBE Speciation Blended Gasoline high 11.5 RVP Thermal Oxidizer designed for 99.9% DRE

Annual Emissions Loading Equation Inerted Only Seagoing Barge/Ship

Ll =

12.46 x ((Q x 42)/1000) x MW x VP x S/(T+460)

Q = MW = VP S = T =	1,000,000 bbls/yr 88.15 lb/lb-mole 4.71 psia 0.2 76 F	loading rate 76 F Annual Average Sat Factor for Seagoing Barge/Ship loading Annual Average product storage temperature
LI =	81073 lb/yr	

01010	1007 71
40.54	tons/yr

Collection Efficiency 99.0% per TCEQ

Collection Loss	810.73 lb/yr
	0.41 tons/yr
T.O. DRE 99.9%	80 lb/yr
	0.04 tons/yr
Total VOC	0.45 tons/yr

Blended Gasoline high 11.5 RVP

Thermal Oxidizer designed for 99.9% DRE

Loading Equation	Hourly Emissions			
Seagoing Barge/Ship	Inerted			

12.46 x ((Q x 42)/1000) x MW x VP x S/(T+460) LI =

Q = MW = VP	490 bbls/hr 88.15 lb/lb-mole 6.04 psia 0.2 87 F	loading rate at 87 F Maximum Daily			
S = T =		Sat Factor for Seagoing Barge loading Maximum product storage temperature			

Ll =

50 lb/hr

Collection Efficiency 99.0% per TCEQ 0.5 lb/hr

T.O. DRE 99.9%	0.0 lb/hr
Total VOC	0.5 lb/hr

Nox, CO and PM Emissions Generated During Marine Loading

-

Thermal Oxidizer		106.261	& 106.262				
Hourly Emis	sions	5390	bph				
-		Flow to Combu	istor	%		Heat Generate	ed
		LB/hr	BTU/ib	Combustion		BTU/hr	
	voc	586	19000	99.9		11,122,866	
SCF	Supp Fuel	0.0	1000	100		0	
Process Flow		30264.7	SCFH				
Natural Gas Flow		0.0	SCFH		Total	11,122,866	BTU/hr
			· · · · · · · · · · · · · · · · · · ·	_			
NOx Factor		0.07	1b/10^ 6 BTL	<u>,</u>			

CO [0.004	16/10^ 6BTU				
CU Factor	0.004	IL GOA COTU	1			
PM Factor	0.0076	10/10-6810				1
HOURLY	ib/hr			PBR Limit		4
NOx Generated	0.779		261	6	lb/hr	
CO Generated	0.044		261	6	lb/hr	
PM2.5 Generated	0.085		262	L/K	Emax=0.214	
voc	3.000		262	L/K	Emax=6.0	1
PM2.5				Gasoline		
L for PM 2.5 =	3.000	mg/m3	L for Gasoline	=	800.000	mg/m3
Distance to recentor	2000	ft	Distance to re	eceptor	2000	ft
Distance K value	14		Distance	K value	14	
Fmax = 1/K	0.214	lb/hr	Emax = L/K		6.000	lb/hr_

	MTBE				
L for MTBE	-	45.000	(L) mg/m3		
Distance to	receptor	2000	ft		
Distance	K value	14			
Emax = L/K		3.214	lb/hr		

lb/yr 5294.970

302.570

574.882

NOx Generated

CO Generated

PM2.5 Generated

Annual Emis	sions	10,000,000	bbis/yr				
		Flow to Combu	istor	%		Heat Generate	ed
		LB/yr	BTU/lb	Combustion		BTU/yr	
VOC		1026958	19000	99.9		2.E+10	1
SCF	Supp Fuel	56,149,733	1000	100		6.E+10	
Process Flow		56149732.6	SCFY				
Natural Gas Flow		11229946.5	SCFY		Total	7.56.E+10	BTU/yr
Natural Gas	flow = 20%	of Process Gas	flow	-			
NOx Factor	Τ	0.07	lb/10^6 BTU	1			
CO Factor		0.004	lb/10^6 BTU				
PM Factor		0.0076	Ib/10^6 BTU	1			
ANNUAL	1	lb/yr	tons/yr	1			

2.647

0.151

0.287

201 70619 MTBE Loading 262 Centurion BROWNSVILLE Marine PBR Houriy and Annual NOx CO PM Emission risk

DHOENX NGINEERING INC. 8086 Galf Frankle, Salis 600 Higgsbo, Torok 27817	FUGITIV	E EMISSIO	TIONS	DATE: JOB NO:	6/19/2017 78261	
REFERENCE: CONTROL PLAN:	TCEQ FACTO SOCMI W/O (RS 1/10/1996 C2、28VHP				
IIIONAL IACTORS.						
CLIENT:	CENTURION	BROWNSVILI	E TERMINALS			<u> </u>
LOCATION: UNIT:	Brownsville T2 Gasoline Stora	K ge and Diesel St	torage Terminal			
	PROCESS	VOC			NO. OF	TOTAL
EMISSION	STREAM	SOURCE	CONTROL	NOTES	SOURCES	LBS/HR
JOURCE						
VALVES	В	0.0089	97%		60	0.01602
	C	0.0035	97%		432	0.045.56
	U	0.0007	•/•			0.00000
PUMPS SEALS	С	0.0386	85%		8	0.04632
	D	0.0161	0%		4	0.06440
COMPRESSOR SEALS	В	0.5027	85%		I	0.07541
RELIEF VALVES	В	0.2293	97%		Û	0.00000
EL ANICES	ъ	0.0029	97%	7	945	0.08222
FLANGES	c	0.0005	97%	ż	532	0.00798
	Ď	0.00007	97%	7	323	0,00068
OPEN ENDED LINES	А	0.0040	97%			0.00000
SAMPLE CONNECTION	A	0.0330	97%		۵	0.00000
PROCESS STREAM LEC	END				EMISSION TO	TALS
A All Streams				I	.BS/HR	0 42518
B Gas/Vapor Streams				ĩ	BS/DAY	10.20428
C Light Liquid & Gas/Li	iquid Streams			I	_BS/YR	3724.56191
D Heavy Liquid Streams	5			1	FONS/YR	1.86228
Light Liquid > 0.044 PSI	A VP @ 68⁼F			тс	DNS/1 YEAR	1.86228
	MOLFR	COMPONEN	Т	Lbs/Hr	Lbs/Day	Ton/Yr
	I			0.4251783	10.2042792	1.862280954
	0			ő	0	ő
	Ō			0	0	0
	1			0.4251783	10.2042792	1.862280954
Fugitive Emission Factor 1	Notes:					
1. Factors are taken from	EPA Documen	t, EPA-453/R-93	3-026, June 1993,	, Page 2-10, ex	cept SOCMI w/c	C2 and w/ C2
Control Efficiency Notes:						

 \bigcirc

Permits by Rule 30 TAC Chapter 106, Section 106.4 "Quick-Check" Applicability Checklist Instructions and Guidance for Using the "Quick-Check" Checklist

		the formation of the second									
List tl	he maximum a	nnual emission rates, in	TONS PER YEAR (TPY), for this project:							
со	0.16	0.16 NO _x 2.67 VOC 23.87									
PM	0.29		SO ₂		Other						
The f	ollowing que	tions require a "Yes,"	or "No," answer to b	e indicated for this pe	rmit by rule claim:						
А.	Title 30 TAC	C § 106.4(a)(5): Currer	nt Permit by Rule Re	quirements							
Have	you checked t	o determine if this exem	pt project is being cla	imed under the current	version of 30 TAC 106?	X YES	□no				
	If "Yes," con	ntinue to next question									
	If "No," plea	ase contact the Air Perm	its Division for a copy	of the current permit b	y rule to be claimed.						
B .	Title 30 TA	C § 106.4(a)(7): Permit	t by rule prohibition	check	•						
Are the permi	here any <u>air pe</u> its by rule?	rmits under the same acc	count containing perm	it conditions which pro	hibit or restrict the use of	YES	X NO				
	If "No," con	tinue to next question									
	lf "Yes, " per	mits by rule may not be	used or their use must	t meet the restrictions of	f the permit.						
	A new permi	t or permit amendment n	nay be required.								
List p	ermits number	r(s):									
C.	Title 30 TA	C § 106.4(b): Circumv	ention check		· · · · · · · · · · · · · · · · · · ·						
Title . (cove	30 TAC § 106. ring permitting	4(b) states "No person s g)." Circumvention by a	shall circumvent by ar rtificial limitations ma	tificial limitations the reason of the re The reason of the reason of th	equirements of § 116.110 ited to:	of this title	2				
	(1.) <i>A</i> .	dividing a complete pro	oject into separate seg	ments to circumvent §1	06.4(a)(1) limits;						
	(2.) claiming feed or production rates below the physical capacity of the project's equipment in order to begin constructing facilities before a permit or permit amendment is approved for full scale operations, particularly when the unit will not be economically viable at less than permitted capacity;										
	(3.) claiming a limited chemical list in order to begin constructing facilities before a permit or permit amendment is approved for additional chemicals, particularly when the unit will not be economically viable until the additional chemicals are authorized.										
Does	your project n	neet any of the criteria li	sted above?			YES	X NO				
	If "No, " con	tinue to next rule question	on.								
	If "Yes," a permit by rule may not be claimed.										
D.	D. Title 30 TAC § 106.4(c) and (d): Compliance with all Rules										
Will perm	the facility cor itting or regist	nply with all rules and re ration requirements?	egulations of the, the i	ntent of the Texas Clea	n Air Act, and any local	X YES	□ NO				
	If "Yes," cor	ntinue to next rule questi	ion								
	If "No," a p	ermit by rule may not be	claimed								

Guillermo Reyes

To:

From: Ralph Chaiet <RChaiet@wittobriens.com> Sent: Tuesday, June 20, 2017 2:02 PM **Guillermo Reyes** Subject: Additional Document Centurion Brownsville Tank emissions Attachments: 20170619 Centurion Tank 250-3 Reformate emissions.pdf

I believe that I failed to scan and send you the Tanks 4.09 Emissions calculation for the Reformate storage in Tank 250-3. Please see attached.

Sorry, my error.

We are not asking for negotiations to eliminate the analyzer on the Vapor Combustor. I will be installed.

Ralph

Ralph G. Chaiet P.E. | Senior Air Compliance Specialist

Witt O'Brien's 5718 Cheena Dr. Houston, TX 77096

Direct +1 713-283-7921 Cell +1 832-483-7299

5

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City:	CENTURION BROWNSVILLE 250 M IN REFORMATE $(7-250-3)$	
State: Company: Type of Tank: Description:	Internal Floating Roof Tank	
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	224.00 10,500,000.00 4.00 N 31.00 0.70	
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good	
Rim-Seal System Primary Seal: Secondary Seal	Mechanical Shoe Rim-mounted	
Deck Characteristics Deck Fitting Category: Deck Type:	Detail Welded	
Deck Fitting/Status		Quantity
Access Hatch (24-in. Diam.)/Bolted Automatic Gauge Float Well/Bolted Column Well (24-in. Diam.)/Pipe C Roof Leg (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/G Ladder Well (36-in. Diam.)/Sliding	d Cover, Gasketed d Cover, Gasketed colFlex. Fabric Sleeve Seal Sask. Sliding Cover, w. Pole Sleeve,Wiper Cover, Gasketed	2 2 31 112 2 2

Meterological Data used in Emissions Calculations: Brownsville, Texas (Avg Atmospheric Pressure = 14.72 psia)

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

CENTURION BROWNSVILLE 250 M IN REFORMATE - Internal Floating Roof Tank

	, <u> </u>	De Tem	ally Liquid S perature (d	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vepor Mass	Mal.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
	lon	69.71	64.20	73.21	73.84	0.4347	N/A		114,0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Retormate	Jeil	20.24	65 41	75 27	73.84	0.4562	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	rep	10.34	60.41	70.70	72.04	0.5010	N/A	N/A	114 0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Mar	73.56	68.35	10.70	73.04	0.5010	NIA	N//A	114 0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Apr	76.73	/1.5/	81.89	73.04	0.5487	NVA	10/1	414.0000			114.00	Option 2: A=6 851, B=1307,882, C=217,44
Reformate	May	78.98	73.94	84.01	73.84	0.5848	N/A	NVA	114.0000			114.00	Option 2: A=6 851 B=1307 882 C=217 44
Reformate	Jun	80.56	75.26	85.87	73.84	0.6115	N/A	N/A	114.0000			114.00	Option 2: A=0.001, B=1007,002, C=217.44
Reformate	Jui	81.31	75.68	86.94	73.84	0.6244	N/A	N/A	114.0000			114.00	Uption 2: A=6.851, B=1307.862, C=217.44
Reformate	Aug	81.09	75.54	86.64	73.84	0.6207	N/A	N/A	114.0000			114.00	Option 2: A=6 851, B=1307.882, C=217.44
Referencia	Sen	79 55	74.50	84.61	73.84	0.5944	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reiomate	000	76.57	71 42	81 72	73 84	0 5463	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reiormate	Ua	70.07	00.05	77.00	73.84	0 4933	N/A	N/A	114 0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Nov	73.02	68.25	77.80	13.64	0.4933	14/A	NUA	114.0000			114 00	Option 2: A=6.851, B=1307,882, C=217.44
Reformate	Dec	69.82	65.31	74.33	/3.84	0.4493	N/A	N/A	114.0000				**************************************
TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

CENTURION BROWNSVILLE 250 M IN REFORMATE - Internal Floating Roof Tank

Month	January	February	March	April	May	June	July	August	September	October	November	December
Dia Caali aaaa (b)	9 5706	10 0504	11 0542	12,1278	12.9426	13.5463	13.8382	13.7525	13.1594	12.0725	10.8819	9.8954
Rim Seal Losses (ID).	0.6000	0 6000	0.6000	0,6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Seal Factor A (D-molefit v/ (mob)^o)	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0,4000	0.4000	0.4000	0.4000	0.4000
Seal Factor B (ID-mole/it-yr (mpn) 1).	0.0075	0.0079	0 0087	0.0095	0.0101	0.0106	0.0108	0.0108	0.0103	0.0095	0,0085	0.0078
Value of vapor Pressure Function.	0.0010	0.0070										o 4400
Vapor Pressure at Daily Average Equit	0 4347	0.4562	0.5010	0.5487	0.5848	0.6115	0.6244	0.6207	0.5944	0.5463	0.4933	0.4493
Surace Temperature (psia).	224 0000	224 0000	224,0000	224,0000	224,0000	224.0000	224.0000	224,0000	224.0000	224.0000	224.0000	224.0000
Lank Diameter (T):	114 0000	114 0000	114,0000	114,0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114,0000
Vapor Molecular Weight (IDND-micha).	1 0000	1 0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Product Pactor:	1.0000											
the fate days will be made a fib to	4 1270	4 1270	4 1270	4,1270	4.1270	4.1270	4,1270	4.1270	4.1270	4.1270	4.1270	4,12/0
Windrawai Losses (iii).	31 0000	31 0000	31,0000	31,0000	31,0000	31.0000	31.0000	31,0000	31.0000	31.0000	31.0000	31,0000
Number of Columns:	0 7000	0 7000	0 7000	0,7000	0,7000	0.7000	0.7000	0,7000	0.7000	0.7000	0.7000	0.7000
Effective Column Diameter (iii).	3 500 000 0000 3	500 000 0000	3 500 000 0000	3.500.000.0000	3,500,000,0000	3,500,000.0000	3,500,000.0000	3,500,000.0000	3,500,000.0000	3,500,000.0000	3,500,000.0000	3,500,000.0000
Net Throughput (gal/mo.):	0,0015	0.0015	0 0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Shell Clingage Factor (corridou sqn).	7 1500	7 1500	7 1500	7 1500	7,1500	7.1500	7.1500	7,1500	7.1500	7,1500	7.1500	7,1500
Average Organic Liquid Densky (ib/gai)	224 0000	224 0000	224 0000	224,0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224,0000	224.0000
Tank Diameter (fi):	224.0000	224.0000										
and an and the second	31 8593	33 4563	36 7979	40.3718	43,0843	45,0940	46.0656	45.7803	43.8061	40.1877	36.2245	32.9404
Deck Fitting Losses (ID).	0.0075	0 0079	0.0087	0.0095	0.0101	0.0106	6 0.0108	0.0108	0.0103	0.0095	0.0085	0.0078
Value of vapor Pressure Function	114 0000	114 0000	114 0000	114 0000	114,0000	114,0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000
Vapor Molecular Weight (Ib/Ib-mole).	1 0000	1 0000	1 0000	1 0000	1 0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Product Factor	447,4000	447 4000	447 4000	447 4000	447 4000	447 4000	447.4000	447,4000	447.4000	447.4000	447,4000	447.4000
Tot. Roof Fitting Loss Fact. (ID-moleryr):	447.4000											
	0,000	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000
Deck Seam Losses (ID):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length (n)	0.0000	0.0000	0,0000									
Deck Seam Loss per Unit Length	0,0000	0.0000	0 0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000) 0.0000	0.0000	0.0000
Factor (Ib-mole/It-yr):	0.0000	6,0000	0.0000	0.0000	0,0000	0.0000	0.0000 (0.0000	0.0000) 0.0000	0.0000	0.0000
Deck Seam Length Factor(fl/sqn):	224,0000	224 0000	224 0000	224 0000	224,0000	224,0000	224.0000	224.0000	224.0000) 224.0000	224.0000	224,0000
Tank Diameter (It).	114 0000	114 0000	114 0000	114 0000	114 0000	114,0000	0 114.0000	114,0000	114.0000) 114,0000	114.0000	114.0000
Vapor Molecular Weight (Ibrid-mole)	1 0000	1 0000	1 0000	1 0000	1 0000	1.0000	1.0000	1,0000	1.0000) 1.0000	1.0000	1.0000
Product Factor:	1.0000	1.0000	1.0000									
								C2 C508	e 1.000	56 3871	61 2334	46 9628
Total Losses (lb):	45.5570	47.6337	51.9791	56.6266	60.1540	62.7673	3 64.0309	63.6598	61.0925	3 30.367	51.2004	40.0020
				-		(1) - (1) - (1 - k) = 1	Koor Fitting Loss	PECIDIS		m	Losses(ib)	
Roof Fitting/Status				Qua	nuty	KFa(ip-mole/yr)	KED(IDHIIOBA()	1 mpn m)		0.00	2 4040	
Access Hatch (24-in, Diam.)/Bolted Cover, Gaskete	ed				2	1.60		0.00		0.00	5 0505	
Automatic Gauge Float Well/Bolted Cover, Gaskete	eci				2	2.80		0.00		0.00	0.0000	
Column Well (24-in, Diam, VPipe ColFlex, Fabric S	Sleeve Seal				31	10.00		0.00		0.00	323.0312	
Roof Lee (3-in Diameter)/Fixed					112	0.00		0.00		0.00	0.0000	
Sinted Guide-Pole/Sample Well/Gask Sliding Cov	er, w. Pole Sieeve Wider	r			2	8.30		4.40		1.60	17.6630	
Ladder Well (36-in. Diam.)/Sliding Cover, Gasketer	3				2	56.00		0.00		0.00	119.1721	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

CENTURION BROWNSVILLE 250 M IN REFORMATE - Internal Floating Roof Tank

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Reformate	142.89	49.52	475.67	0.00	668.08

AIR PERMITS DIVISION

MAY 2 2 2017

RECEIVED

I. Registrant Information									
A. Company or Other Legal Customer Name: CMG Brownsville II, LLC									
B. Company Official Contact Information (X Mr.] Mrs.] Ms. Other									
Name: Peter Schmar									
Title: Executive VP of Operations MAY 2.2.4									
Mailing Address: PO Box 797544 APIKI									
City: Dallas	State: Texas		ZIP Code: 75379-7	7544					
Phone: 1-918-801-8911		Fax:	. <u></u>						
E-mail Address: pschmar@centuriont	erminals.com								
All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested									
C. Technical Contact Information	(🗙 Mr. 🗌 Mrs	s. 🗌 Ms. 🗌 Other)					
Name: Ralph Chaiet									
Title: Senior Air Compliance Specialist									
Company Name: Witt O'Brien's									
Mailing Address: 5818 Cheena Dr.									
City: Houston	State: Texa	S	ZIP Code: 770	096					
Phone: 713-283-7921		Fax: 713-721-8376							
E-mail: rchaiet@wittobriens.com			and the second						
II. Facility and Site Informat	tion								
A. Name and Type of Facility		· · · ·							
Facility Name: Centurion Brownsville	Terminal								
Type of Facility:	🛛 Permanent		Temporary						
For portable units, please provide the	e serial number	of the equipment bei	ng authorized belo	w.					
Serial No:		Serial No:							
B. Facility Location Information									
Street Address: no address assigned									
If there is no street address, provide written driving directions to the site and provide the closest city or town, county, and ZIP code for the site (attach description if additional space is needed).									
Heading east On R.L. Ostos Rd, drive	approximately 1/2	2 mile east past Liquid 0	Cargo Road. Port of	Brownsville					
City: Brownsville	County: Cameron ZIP Code: 78521								

TCEQ-20182 (APDG 5379v17, Revised 07/15) PI-7-CERT This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

Page _____ of _____

II. Facility and Site Information (continued)									
C. TCEQ Core Data Form									
Is the Core Data Form (TCEQ Form Number 10400) atta	the Core Data Form (TCEQ Form Number 10400) attached?								
If "NO," provide customer reference number (CN) and re	egulated entity number (RN) below.								
Customer Reference Number (CN): 604726745- كركاميا	570378 BG								
Regulated Entity Number (RN): 10798129									
D. TCEQ Account Identification Number (if known):									
E. PBR number(s) claimed under 30 TAC Chapter 10	6								
(List all the individual rule number(s) that are being clai	med.)								
106. 261	106. 476								
106. 262 and 263	106. 472								
106. 478	106. 511 and 532								
F. Historical Standard Exemption or PBR									
Are you claiming a historical standard exemption or PBR?									
If "YES," enter rule number(s) and associated effective d	ate in the spaces provided below.								
Rule Number(s)	Effective Date								
G. Previous Standard Exemption or PBR Registration	Number								
Is this authorization for a change to an existing facility p standard exemption or PBR?	reviously authorized under a	🛛 YES 🗌 NO							
If "YES," enter previous standard exemption number(s) effective dates in the spaces provided below.	and PBR registration number(s), a	nd associated							
Standard Exemption and PBR Registration Number(s)	Effective Date								
129047	2/18/2015 (to be Voided)								
H. Other Facilities at this Site Authorized by Standard	d Exemption, PBR, or Standard Per	mit							
Are there any other facilities at this site that are authoriz PBR, or Standard Permit?	zed by an Air Standard Exemption,	🗌 YES 🔀 NO							
If "YES," enter standard exemption number(s), PBR reg number(s), and associated effective date in the spaces p	istration number(s), and Standard rovided below.	Permit registration							
Standard Exemption, PBR Registration, and Standard Permit Registration Number(s)	Effective Date								

TCEQ-20182 (APDG 5379v17, Revised 07/15) PI-7-CERT This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

II. Facility and Site Information (continued)						
I. Other Air Preconstruction Permits	n na szina () diakorrad					
Are there any other air preconstruction permits at this site?	TYES X NO					
If "YES," enter permit number(s) in the spaces provided below.						
J. Affected Air Preconstruction Permits						
Does the PBR being claimed directly affect any permitted facility?	🗌 YES 🔀 NO					
If "YES," enter the permit number(s) in the spaces provided below.						
K. Federal Operating Permit (FOP) Requirements (30 TAC Chapter 122 Applicability)						
1. Is this facility located at a site that is required to obtain an FOP UYES INO DY pursuant to 30 TAC Chapter 122?	Го Be Determined					
If the site currently has an existing FOP, enter the permit number:						
Check the requirements of 30 TAC Chapter 122 that will be triggered if this certification is a (check all that apply)	accepted.					
🗌 Initial Application for an FOP 🛛 Significant Revision for an SOP 🔹 🗌 Minor Revis	ion for an SOP					
□ Operational Flexibility/Off Permit Notification for an SOP □ Revision for	a GOP					
☐ To be Determined						
2. Identify the type(s) of FOP issued and/or FOP application(s) submitted/pending for t (check all that apply)	he site.					
□ SOP □ GOP □ GOP application/revision (submitted or under APD r	review)					
☑ N/A ☐ SOP application/revision (submitted or under APD review)						
III. Fee Information (See Section VII. for address to send fee or go to www.tceq.texa online.)	us.gov/epay to pay					
A. Fee Requirements						
Is a fee required per Title 30 TAC § 106.50?	X YES 🗌 NO					
If "NO," specify the exception (check all that apply)						
1. Registration is solely to establish a federally enforceable emission limit.	🗌 YES 🔀 NO					
2. Registration is within six months of an initial PBR review, and it is addressing deficiencies, administrative changes, or other allowed changes.	🗌 YES 🗙 NO					
3. Registration is for a remediation project (30 TAC § 106.533).	🗌 YES 🔀 NO					

TCEQ-20182 (APDG 5379v17, Revised 07/15) PI-7-CERT This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

III. Fee Information (See Section VII. for address to send fee or go to www.tceq online.) (continued)	.texas.gov/epay to pay
B. Fee Amount	
1. A \$100 fee is required if <i>any</i> of the answers in III.B.1 are "YES."	
This business has less than 100 employees.	🛛 YES 🗌 NO
This business has less than 6 million dollars in annual gross receipts.	🗌 YES 🗵 NO
This registration is submitted by a governmental entity with a population of less than 10,000.	🗌 YES 🗵 NO
This registration is submitted by a non-profit organization.	🗌 YES 🗵 NO
2. A \$450 fee is required for all other registrations.	
C. Payment Information	
Check/money order/transaction or voucher number:	
Individual or company name on check: Peter Schmar	
Fee Amount: \$ 100.00	
Was fee paid online?	🗌 YES 🔀 NO
Place a check next to the appropriate box to indicate what is included in yo NOTE: Any technical or essential information needed to confirm that facilities are <i>n</i> requirements of the PBR must be provided. Not providing key information could resu deficiency and voiding of the project.	ur submittal. weeting the ult in an automatic
A. PBR requirements (Checklists are optional; however, your review will go faster if checklists.)	you provide applicable
Did you demonstrate that the general requirements in 30 TAC § 106.4 are met?	X YES 🗌 NO
Did you demonstrate that the individual requirements of the specific PBR are met?	X YES 🗌 NO
B. Confidential Information (All pages properly marked "CONFIDENTIAL")	🗌 YES 🗵 NO
C. Process Flow Diagram	🔀 YES 🗌 NO
D. Process Description	🔀 YES 🗌 NO
E. Maximum Emissions Data and Calculations	🛛 YES 🗌 NO
Note: If the facilities listed in this registration are subject to the Mass Emissions Capunder 30 TAC Chapter 101, Subchapter H, Division 3, the owner/operator of to possess NO _x allowances equivalent to the actual NO _x , emissions from these facilities.	> & Trade program hese facilities must

IV. Technical Information Including State And Federal Regulatory Require (continued)	ements
Place a check next to the appropriate box to indicate what is included in yo	ur submittal.
Note: Any technical or essential information needed to confirm that facilities are mee of the PBR must be provided. Not providing key information could result in an automa voiding of the project.	ting the requirements tic deficiency and
F. Is this certification being submitted to certify the emissions for the entire site?	X YES 🗌 NO
If "NO," include a summary of the specific facilities and emissions being certified.	
G. Table 1(a) (Form 10153) Emission Point Summary	X YES NO
H. Distances from Property Line and Nearest Off-Property Structure	
Distance from this facility's emission release point to the nearest property line:_all Por	t property feet
Distance from this facility's emission release point to the nearest off-property structure	e: 2000 ft feet
I. Project Status	
Has the company implemented the project or waiting on a response from TCEQ?	nplemented 🔀 Waiting
J. Projected Start of Construction and Projected Start of Operation Dates	
Projected Start of Construction (provide date): 08/01/2017	
Projected Start of Operation (provide date): <u>12/01/2017</u>	
V. Delinquent Fees	
This form will not be processed until all delinquent fees and/or penalties owed to t of the Attorney General on behalf of the TCEQ is paid in accordance with the Delinque Protocol. For more information regarding Delinquent Fees and Penalties, go to the TC www.tceq.texas.gov/agency/delin/index.html.	he TCEQ or the Office nt Fee and Penalty EQ Web site at:
VI. Signature For Registration And Certification	
The signature below confirms that I have knowledge of the facts included in this applic facts are true and correct to the best of my knowledge and belief. I further state that to knowledge and belief, the project for which this application is made will not in any way of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Qual governmental ordinance or resolution enacted pursuant to the TCAA. I further state the signature indicates that this application meets all applicable nonattainment, prevention deterioration, or major source of hazardous air pollutant permitting requirements. The signifies awareness that intentionally or knowingly making or causing to be made false representations in the application is a criminal offense subject to criminal penalties.	cation and that these the best of my y violate any provision r 382, the Texas Clean ity; or any local nat I understand my on of significant e signature further e material statements or
Name (printed): Peter Schmar	
Signature (original signature required):	
Date: 5.3.17	

TCEQ-20182 (APDG 5379v17, Revised 07/15) PI-7-CERT This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

								\bigcirc			
	AIR PERMITS D	MISIUN							7		
TCEQ	MAY 22 2 RECEIV	017. ED. rding completion of	CEQ		re C _{e read})ata the Core	For Data	M Form Instructions	or c <u>all 512</u>	-239-5175.	
SECTION I:	General Information	ו <u>י</u>								AV 2 7 20	17
1. Reason for	Submission (If other is o	hecked please des	scribe in sp Form shou	ace p	orovide	d.) tted with	the n	rogram application		ADIRT	
	(Core Data Form should	be submitted with	the renew	al form	n)		her			AI	
2. Customer F	Reference Number (if issue	ed)			<u>'''</u>	3. Re	gulate	ed Entity Reference	e Number (if issued)	10-1-1-00-1900-19
CN		f	ollow this I or CN or RN Central F	ink to 1 num Recijs	searcr bers in strv**	RN	10	7928129			
SECTION II	: Customer Informat	ion	oonaan	<u></u>							
4. General Cu	ustomer Information	5. Effective Date	e for Custo	mer Ir	nforma	tion Upda	ates (r	mm/dd/yyyy)	01/01/	2017	and a second
New Cust	omer Legal Name (Verifiable w	Upd	ate to Cust etary of Sta	omer ate or	Inform Texas	ation Comptro	ller of	Change in Public Accounts)	Regulated I	Entity Ownershi	p the
The Custor Texas Seci	mer Name submitted retary of State (SOS)	or Texas Com	ptroller	auto of Pi	ublic .	ally ba Accoui	sed nts ((on what is cui CPA).	Tent and	active with	ine
6. Customer I	Legal Name (If an individual	, print last name first	: e.g.: Doe,	John)		<u>lf ne</u>	w Cu	stomer, enter previ	ous Custom	er below:	
CMG Brown	sville II, LLC		đ (116		2.8						- A
7. TX SOS/C 080242898	PA Filing Number 3	8. TX State Tax 32060074765	ID (11 digits)			9. F 812	edera 2880	Il Tax ID (9 digits) 716	[10. DUN	S Number (if app	licable)
11. Type of C	Customer: 🔀 Corpora	tion		ndivid	lual		Par	rtnership: 🛄 Gener	al 🔟 Limited		
Government:	City County Federal	State Other		Sole F	Proprie	orship		Other:			
12. Number o 0-20 🔀	of Employees (21-100 101-250	251-500	501 and	l high	er	13. X	Indep Yes	endently Owned a	and Operate	ed?	
14. Customer	r Role (Proposed or Actual)	- as it relates to the I	Regulated E	intity li	sted on	this form.	Pleas	e check one of the f	ollowing:		
Owner	onal Licensee Resp	rator onsible Party		wner & oluntar	& Oper ry Clea	ator nup App	licant	Other:			
15 Mailing	15851 Dallas Parkwa	y / PO Box 797	544				1				
Address:	Suite 650			0170							
	City Dallas		State	ΤX		ZIP	7537	/9	ZIP + 4	7544	
16. Country M	Mailing Information (if outsid	e USA)			17 <u>. I</u>	E-Mail Ac	ldress	(if applicable)			
				0	psch	mar@c	entu	rionterminals.c	om (if applicat		
18. Telephon		18	J. Extensio	n or C					(III applicat	jej	
(918)	801 - 8911					111 og					
SECTION I	II: Regulated Entity	Information									
21. General F	Regulated Entity Information	on (If 'New Regulat	ted Entity"	is sele	ected b	elow this	form	should be accom	panied by a	permit applicat	ion)
New Reg	ulated Entity Upda	te to Regulated En	tity Name	tod i	Upda	te to Reg		Entity Informatio	n Data Sta	ndards (rem	oval
of organi	uiateo Entity Name s izational endinos su	ch as Inc. LP. c	or LLC).	leu II	nuu		571 1	CLA Ageney			
22. Regulate	d Entity Name (Enter name	of the site where the	regulated a	iction i	is takinę	place.)					

CMG Brownsville II

23 Street Address of the	not li	sted Jress yet						
Regulated Entity:	Port	of Brownsville					ATT THE A	
(No PO Boxes)	City	Brownsville	State	TX	ZIP	78521	ZIP + 4	
24. County	Cam	eron						

Enter Physical Location Description if no street address is provided.

25. Description to Physical Location:	Drivin	g east on R.L. Ost	os Rd contini	ue approxi	mately 1/2	mile past Li	quid Cargo R) pad	
26. Nearest City	1.	Contraction of the second seco					State		Nearest ZIP Code
	% (
27. Latitude (N) In Decim	al;				28. Lon	gitude (W)	In Decimal		
Degrees	Minutes		Seconds		Degrees		Minutes		Seconds
25	57.23				97		21,50		
29. Primary SIC Code (4 dig	29. Primary SIC Code (4 digits) 30. Secondary SIC Code (4 digits) 31. Primary NAICS Code (5 or 6 digits) (5 or 6 digits) (5 or 6 digits)								
4226	Nur of the second								
33. What is the Primary Bu	siness c	of this entity? (Do	not repeat the S	SIC or NAICS	description.)				
Storage and Blending	of Gas	oline				903 B		5 - 1981 - 1995 5 - 1985 - 1995	
	440 L	ouisiana St	r ang a	and and			1999 - 1997 1997 - 1997	TYPE .	
34. Mailing	Suite	723		in di Antonio	1 -	- (184) - (1971 -			u tangan <u>man</u> angan sa
	City	Houston	·····	State	TX	ZIP	77002	arcelar.	ZIP+4
35. E-Mail Address:		peterschmar@gn	nail.com					A STATE	
36. Telepho	36. Telephone Number 37. Extens				ion or Code 38. Fax Number (if applicable)				if applicable)
(918) 891 - 8911					(

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air		Petroleum Storage Tank	D PWS
Sludge	Storm Water	Title V Air	Tires	Used Oil
Voluntary Cleanup	Waste Water	Wastewater Agriculture	U Water Rights	Other:

SECTION IV: Preparer Information

40. Name: Ralph Chaiet			41. Title: Senior Air Compliance Specialist
42. Telephone Number	43. Ext./Code	44. Fax Number	45. E-Mail Address
(713) 283 - 7921		() -	rchaiet@wittobriens.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	CMG Brownsville II, LLC	Job Title:	Executive Vice President of Operations
Name(In Print):	PelerSchmar	Phone:	(918)801-8911
Signature: 7	My	Date:	5.3.17

MAY 2 2 2017 <u>APIRT</u>

May 18, 2017

AIR PERMITS DIVISION

MAY 22 2017

RECEIVED

Texas Commission on Environmental Quality Air Permits Division Air Permits Initial Review Team (APIRT) MC-161 12100 Park 35 Circle, Building C, Third Floor, Room 300W Austin, TX 78753

CMG Brownsville II, LLC, Brownsville, Cameron County Notification of Use of PBR for Construction of Storage Tanks (7), Butane Storage and Gasoline Blending System and a Marine Loading Vapor Control Combustor/Thermal Oxidizer.

CMG Brownsville II, LLC, in Brownsville, Cameron County, is submitting this Registration of Use of PBR 106.262, 106.472, 106.476, 106.478, 106.532, 106.511, 106.263 and 106.261.

This submittal request will supercede Permit 129047 which was issued in February 2015 to Stampede Energy LLC.

This Registration has been sealed by a Professional Engineer as the construction cost of these facility will exceed \$2,000.000.

A copy of the fee check for \$100 is enclosed in this document. The actual Fee check has been sent to the Revenue Section separately with a cover letter.

For any technical questions, please call Ralph Chaiet at Witt O'Brien's at 713-283-7921, and we will assist you in any way possible.

Sincerely, Chart

Ralph Chaiet P.E. Senior Air Compliance Specialist

Attachments

cc: Mr. Peter Schmar, CMG Brownsville II, LLC, Houston, TX Air Section Manager, Region 15, TCEQ, Harlingen, Texas

. .

Antim

May 18, 2017

Revenue Section, TCEQ Mail Code 214 12100 Park 35 Circle Building A, Third Floor Austin, Texas 78753

AIR PERMITS DIVISION MAY 2 2 2017 RECEIVED

P.O. Box 13088

or

Re: Permit by Rule Fee Submittal

Austin Texas 78711-3088

Attached, please find a check for \$100.00, the filing fee for a Permit by Rule Registration for CMG Brownsville II, LLC, Brownsville, Cameron County, Texas.

CN604726745 RN107928129

Project Name:

Notification of Use of PBR for Construction of Storage Tanks (7), Butane Storage and Gasoline Blending Equipment and a Marine Loading Vapor Control Combustor/Thermal Oxidizer.

Sinderely.

Ralph Chaiet P.E. Senior Air Compliance Specialist Witt O'Brien's

REGISTRATION OF PERMIT BY RULE 106.261, 106.262, 106.472, 106.476, 106.478, 106.511 and 106.532 FOR THE CONSTRUCTION AND OPERATION OF A GASOLINE STORAGE FACILITY WITH MARINE LOADING VAPOR CONTROLS

MAY 2 2 2017 APIRT

Original

CN RN

AIR PERMITS DIVISION

MAY 2 2 2017

RECEIVED

AT

CMG BROWNSVILLE II, LLC CENTURION BROWNSVILLE

BROWNSVILLE, TEXAS

PREPARED BY WITT O'BRIEN'S CHAIE" Marel P.E. Isfzorg

REVISION: 1 MAY 15, 2017 ISSUED FOR: SUBMISSION TO TCEQ

Table of Contents

- 1. Introduction
- 2. PI-7 Cert, CORE Data Form, 106.4 Checklist, 106.261 Checklist, 106.262 Checklist, 106.478 Checklist, 106.472 Checklist, Table 1(a), Copy of Fee Check.
- 3. Area Map and Equipment Plot Plan.
- Process Description and Process Flow Diagrams, Tanks 4.09 Annual Tank emissions calculations, Maximum Hourly Tank emissions calculations, Table 7s for Storage Tanks.
- 5. Calculations for Marine Loading VOC Emissions of Diesel Fuel without controls, Calculations for Marine Loading VOC Emissions Gasoline Loading with Vapor Controls including Vapor Collection Loss.
- 6. Combustion Emissions from Marine Loading Gasoline with Vapor Combustion Controls, NOx and CO and PM Combustion Factors for VCs from vendor. Compliance with 106.261 and 106.262. Table 4 for Marine Loading Vapor Combustion unit.
- 7. Fugitive Emissions from Piping Components.
- 8. MSS Emissions estimates from Tank Degassing with Internal Combustion Engines
- 9. Storm water Collection and Emergency Electric Generator
- 10. Storage of Butane
- 11. APD Marine Loading Collection Efficiency Guidance 09/21/2016.

INTRODUCTION

Stampede Energy LLC is currently authorized under PBR Registration Number 129047 to operate a Bulk Liquid Storage Terminal in Brownsville, Cameron County.

The RN is currently listed as RN107928129 The CN is currently listed as CN604726745

This facility was authorized on February 18, 2015. None of the facilities authorized under this PBR were constructed.

The business plan and the company structure for this facility has changed.

The Company is now "CMG Brownsville II, LLC." (a.k.a. Centurion Brownsville)

Centurion would like to cancel the existing PBR 129047 when this new PBR has been reviewed and issued by the agency.

Under the new marketing plan, the facility will receive Gasoline blendstocks (offloaded from marine vessels) into newly constructed IFR storage tanks, and "blend" finished Gasoline in newly constructed IFR storage tanks for shipment at the marine dock. Also, the facility will receive Diesel Fuel (offloaded from marine vessels) into newly constructed IFR storage tanks for re-shipment at the marine dock.

The three (3) 150 M bbl IFR storage tanks for Gasoline blendstock will be authorized under 106.478. The two (2) 250 bbl IFR storage tanks for finished Gasoline will be authorized under 106.478. The four (4) 250 bbl IFR storage tanks for Diesel Fuel will be authorized under 106.472.

Marine loading of Diesel Fuel will be uncontrolled. The emissions from marine loading will gualify under 106.261.

Marine loading of finished Gasoline will be collected and controlled by a Vapor Combustor with a 99.9% DRE. The Seagoing barges and ship will be inert loaded under slight pressure. Under new TCEQ Marine guidelines, Centurion has selected the case where the collection efficiency will be 99.49%. Testing of ships will be performed per these new guidelines. The VOC emissions will quality under 106.262 for Gasoline. The combustion emissions, NOx and CO will quality under 106.261. The PM emissions will quality under 106.262.

Very high pressure horizontal tanks (bullets) will be installed for Butane storage. The butane will be injected into the finished gasoline for vapor pressure blending. There will be six (6) tanks installed, each with a capacity of 90,000 gallons. These tanks meet the criteria of 106.476 with a container pressure sufficient to prevent vapor or gas loss to the atmosphere.

Piping component fugitive emissions will occur and be monitored by a LDAR program.

An emergency generator powered by a natural gas fired engine will be authorized under 106.511. This will be a very small HP installations.

Storm water collecting and handline will be authorized under 106.532. There is no process water generated with this operation.

MSS emissions from IFR roof landings have been addressed in this document.

This project will have a Capital Cost of greater than \$2,000,000, therefore the project is signed and sealed by a Professional Engineer.

Description of Storage tanks to Be Constructed and Operated

Tanks T-250-1 and T-250-2 (identical) will be IFR tanks with a Diameter of 224 ft and a Height of 48 ft. The nominal capacity is 250,000 bbls. Gasoline will be stored in these tanks under 106.478.

Emissions have been calculated using Tanks 4.09.

Tanks T-250-3, T-250-4, T-250-5 and T-250-6 (identical) will be IFR tanks with a Diameter of 224 ft and a Height of 48 ft. The nominal capacity is 250,000 bbls. Diesel Fuel will be stored in these tanks under 106.472

Emissions have been calculated using Tanks 4.09.

Tanks T-150-1, T-150-5 and T-150-9 (identical) will be IFR tanks with a Diameter of 168 ft and a Height of 48 ft. The nominal capacity is 150,000 bbls. Gasoline Blendstocks will be stored in these tanks under 106.478.

Since these tanks may store a variety of Gasoline Blendstocks from the refinery processes, emissions using Tanks 4.09 was determined. Centurion chooses to assign the emissions based on the highest vapor blendstock that they anticipate storing.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Table 1(a) Emission Point Summary

Date: May 2, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville		Customer Reference No.: Not yet assigned

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

				AIR CONTAMINANT DATA		
1. Emission Point				2. Component or Air Contaminant Name	3. Air Contaminant Em	ission Rate
(A) EPN		(B) FIN	(C) Name		(A) Pound Per Hour	(В) ТРУ
T-150-1		T-150-1	Tank 150-1	VOC	0.548	1.83
T-150-5		T-150-5	Tank 150-5	VOC	0.548	1.83
T-150-9		T-150-9	Tank 150-9	VOC	0.548	1.83
T-250-1		T-250-1	Tank 250-1	VOC	2.15	3.95
T-250-2		T-250-2	Tank 250-2	VOC	2.15	3.95
T-250-3		T-250-3	Tank 250-3	VOC	1.38	0.16
T-250-4		T-250-4	Tank 250-4	VOC	1.38	0.16
T-250-5		T-250-5	Tank 250-5	VOC	1.38	0.16
T-250-6		T-250-6	Tank 250-6	VOC	1.38	0.16
<u>.</u>	·					
		I	4	1	1	

*These two numbers are not additive. ** These two numbers are not additive

EPN = Emission Point Number

•

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a) This form is for use by sources subject to air quality permit requirements and may be revised periodically. (APDG 5178 v5)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Table 1(a) Emission Point Summary

Date: May 2, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville		Customer Reference No.: Not yet assigned

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

en e		5. Component or Air Contaminant Name	6. Air Contaminant Emi	6. Air Contaminant Emission Rate				
(B) FIN	(C) Name		(A) Pound Per Hour	(В) ТРҮ				
Fug	Piping Comp Fug	VOC	1.41	6.16				
Marine Load	Uncontrolled Load	VOC	5.88	1.68				
Marine Load	Marine Vapor Combustor	VOC	1.8	0.51				
Marine Load	Marine Vapor Combustor	NOx	1.91	2.647				
Marine Load	Marine Vapor Combustor	СО	0.109	0.151				
Marine Load	Marine Vapor Combustor	PM/PM10/PM2.5	0.208	0.287				
Marine Load	Uncollected VOC	VOC	2.0	0.57				
Tank Degassing	Portable Control	VOC	0.67	0.08				
Tank Degassing	Portable Control	NOx	0.68	0.016				
Tank Degassing	Portable Control	СО	0.52	0.013				
	 (B) FIN Fug Marine Load Tank Degassing Tank Degassing Tank Degassing 	(B) FIN(C) NameFugPiping Comp FugMarine LoadUncontrolled LoadMarine LoadMarine Vapor CombustorMarine LoadPortable ControlTank DegassingPortable ControlTank DegassingPortable ControlTank DegassingPortable Control	S. Component or Air Contaminant Name(B) FIN(C) NameFugPiping Comp FugVOCMarine LoadUncontrolled LoadVOCMarine LoadMarine Vapor CombustorVOCMarine LoadMarine Vapor CombustorNOxMarine LoadMarine Vapor CombustorCOMarine LoadMarine Vapor CombustorCOMarine LoadMarine Vapor CombustorCOMarine LoadMarine Vapor CombustorCOMarine LoadMarine Vapor CombustorVOCMarine LoadMarine Vapor CombustorVOCTank DegassingPortable ControlVOCTank DegassingPortable ControlNOxTank DegassingPortable ControlCO	S. Component or Air Contaminant Name6. Air Contaminant Emi(B) FIN(C) Name(A) Pound Per HourFugPiping Comp FugVOC1.41Marine LoadUncontrolled LoadVOC5.88Marine LoadMarine Vapor CombustorVOC1.8Marine LoadMarine Vapor CombustorNOx1.91Marine LoadMarine Vapor CombustorCO0.109Marine LoadMarine Vapor CombustorCO0.208Marine LoadMarine Vapor CombustorPM/PM10/PM2.50.208Marine LoadUncollected VOCVOC2.0Tank DegassingPortable ControlNOx0.68Tank DegassingPortable ControlCO0.52				

EPN = Emission Point Number

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a) This form is for use by sources subject to air quality permit requirements and may be revised periodically. (APDG 5178 v5)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Table 1(a) Emission Point Summary

Date: May 2, 2017	Permit No.:	Regulated Entity No.: Not yet assigned
Area Name: Centurion Brownsville		Customer Reference No.: Not yet assigned

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

			AIR CONTAMINANT DATA							
7. Emission Point			8. Component or Air Contaminant Name	9. Air Contaminant Ei	9. Air Contaminant Emission Rate					
(A) EPN	(B) FIN	(C) Name		(A) Pound Per Hour	(B) TPY					
WTTK-1	WTTK-1	Water Collection Tank	VOC	0.116	0.507					
			· · · · · · · · · · · · · · · · · · ·							

*These two numbers are not additive. ** These two numbers are not additive

EPN = Emission Point Number

FIN = Facility Identification Number

TCEQ - 10153 (Revised 04/08) Table 1(a)

This form is for use by sources subject to air quality permit requirements and may be revised periodically. (APDG 5178 v5)

ALL property shown is the Post of Brownsville Centurion will not own the property

PROCESS DESCRIPTION

Gasoline blending stock including Reformate and Natural Gas Condensate will arrive primarily by marine vessels in to three (3) 150 M bbl IFR storage tanks.

According to a prescribed receipt, the blending stocks will be transferred into two (2) 250 M bbl IFR storage tanks. Additional Butane will be injected into the blended gasoline from the on-site Butane high pressure storage tanks.

The finished gasoline will be pumped to awaiting marine vessels. A Vapor Combustor will destroy the VOC emissions generated during the gasoline marine loading operations.

Additionally, Diesel Fuel will arrive by marine vessels and stored in four (4) 250 M bbls IFR tanks. The Diesel Fuel will be pumped out to marine vessels. There is no control of the marine loading emissions.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

	TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics	2 TANKS	i N
Identification User Identification: City: State: Company: Type of Tank: Description:	Centurion Brownsville 150 M in Natural Gasoline Co Internal Floating Roof Tank Natural Gasoline Condensate	3655 LB/42 1.826 tome	Honk Yr Hond
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	168.00 6,300,000.00 25.00 N 16.00 0.70	2310	
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good Good		
Rim-Seal System Primary Seal: Secondary Seal	Mechanical Shoe Rim-mounted		
Deck Characteristics Deck Fitting Category: Deck Type:	Detail Welded		\bigcirc
Deck Fitting/Status Access Hatch (24-in. Diam.)/Bolted Co Automatic Gauge Float Well/Bolted Co Column Well (24-in. Diam.)/Pipe ColI Ladder Well (36-in. Diam.)/Sliding Cov Roof Leg (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/Gask Vacuum Breaker (10-in. Diam.)/Weigh	over, Gasketed over, Gasketed Flex. Fabric Sleeve Seal <i>r</i> er, Gasketed t. Sliding Cover, w. Pole Sleeve,Wiper ted Mech. Actuation, Gask.	Quantity 1 16 16 69 1 1	

Meterological Data used in Emissions Calculations: Brownsville, Texas (Avg Atmospheric Pressure = 14.72 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Centurion Brownsville 150 M in Natural Gasoline Co - Internal Floating Roof Tank

		Da Tem	ily Liquid So perature (de	unf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Natural Gasline Condensate	Jan	68.71	64.20	73.21	73.84	5,9792	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Feb	70.34	65.41	75.27	73.84	6.1655	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Mar	73.56	68.35	78.76	73.84	6.5452	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Apr	76.73	71.57	81.89	73.84	6.9378	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	May	78.98	73.94	84.01	73.84	7.2275	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Jun	80.56	75.26	85.87	73.84	7.4379	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Jul	81.31	75.68	86.94	73.84	7.5384	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Aug	81.09	75.54	86.64	73.84	7.5090	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Sep	79.55	74.50	84.61	73.84	7.3035	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Oct	76.57	71.42	81.72	73.84	6.9179	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Nov	73.02	68.25	77.80	73.84	6.4810	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15
Natural Gasline Condensate	Dec	69.82	65.31	74.33	73.84	6.1057	N/A	N/A	66.0000			66.00	Option 2: A=6.81, B=1268.03, C=273.15

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Centurion Brownsville 150 M in Natural Gasoline Co - Internal Floating Roof Tank

Menth:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (lb):	71,8490	74,7830	80.9537	87.6203	92.7405	96.5742	98.4414	97.8922	94.1132	87.2747	79.8912	73.8343
Seal Factor A (lb-mole/ft-vr):	0.6000	0.6000	0.6000	0,6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Seal Factor B (lb-mole/ft-vr (mph)^n):	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Value of Vapor Pressure Function:	0.1296	0.1349	0.1460	0.1580	0.1673	0.1742	0.1776	0.1766	0.1698	0.1574	0.1441	0.1332
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	5.9792	6.1655	6.5452	6.9378	7.2275	7.4379	7.5384	7.5090	7.3035	6.9179	6.4810	6.1057
Tank Diameter (ft):	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000
Vapor Molecular Weight (lb/lb-mole):	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Withdrawal Losses (lb):	17.1199	17.1199	17,1199	17.1199	17.1199	17.1199	17.1199	17.1199	17.1199	17.1199	17.1199	17.1199
Number of Columns:	16,0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000
Effective Column Diameter (ft)	0.7000	0.7000	0,7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000
Net Throughout (gal/mg.)	13 125 000 000013	3.125.000.00001	3,125,000,00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.0000
Shell Clinoage Factor (bbl/1000 soft):	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Average Organic Liquid Density (Ib/gal):	6,1000	6.1000	6.1000	6.1000	6.1000	6.1000	6.1000	6.1000	6.1000	6.1000	6.1000	6.1000
Tank Diameter (ft):	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000
Deck Fitting Losses (lb):	167,4338	174.2712	188.6511	204.1867	216.1186	225.0525	229.4036	228.1237	219.3174	203.3813	186.1750	172.0604
Value of Vapor Pressure Function:	0.1296	0.1349	0.1460	0.1580	0.1673	0.1742	0.1776	0.1766	0.1698	0.1574	0.1441	0.1332
Vapor Molecular Weight (lb/lb-mole):	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	234.9000	234.9000	234.9000	234.9000	234.9000	234.9000	234.9000	234,9000	234.9000	234,9000	234.9000	234.9000
Deck Seam Losses (lb):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length (ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Loss per Unit Length												
Factor (lb-mole/ft-yr):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tank Diameter (ft):	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168,0000
Vapor Molecular Weight (lb/lb-mole):	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000	66.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	256 4027	266 1742	286 7247	308 9269	325 9791	338 7466	344 9650	343,1358	330.5505	307.7760	283,1861	263.0146
Total Losses (ib).	200.402.1	200.1142	200.7211	000.0100	020.0101		Poof Eitting Los	e Eactore				
Roof Fitting/Status				Q	uantity	KFa(lb-mole/yr) KFb(lb-mole/	(yr mph^n))		m	Losses(lb)	
Access Hatch (24-in Diam)/Bolted Cover, Ga	sketed				1	1.60)	Ö.00		0.00	16.4553	
Automatic Gauge Float Well/Bolted Cover, Ga	sketed				1	2.80)	0.00		0.00	28.7968	
Column Well (24-in, Diam, VPipe ColFlex, Fa	bric Sleeve Seal				16	10.00	כ	0.00		0.00	1,645.5293	
Ladder Well (36-in, Diam, VSliding Cover, Gas	keted				1	56.00)	0.00		0.00	575.9353	
Roof Leg (3-in, Diameter)/Fixed					69	0.00)	0.00		0.00	0.0000	
Slotted Guide-Pole/Sample Well/Gask, Sliding	Cover, w. Pole Sleeve.	Wiper			1	8.30	2	4.40		1.60	85.3618	
Vacuum Breaker (10-in. Diam.)/Weighted Med	h. Actuation, Gask.				1	6.20	ס	1.20		0.94	63.7643	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Centurion Brownsville 150 M in Natural Gasoline Co - Internal Floating Roof Tank

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Natural Gasline Condensate	1,035.97	205.44	2,414.18	0.00	3,655.58				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State	Centurion Brownsville 150 M in Reformate
Company: Type of Tank: Description:	Internal Floating Roof Tank
Tank Dimensions	
Diameter (ft):	168.00
Volume (gallons):	6,300,000.00
Turnovers:	25.00
Self Supp. Roof? (y/n):	N
No. of Columns:	16.00
Eff. Col. Diam. (ft):	0.70
Paint Characteristics	
Internal Shell Condition:	Light Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Rim-Seal System	
Primary Seal:	Mechanical Shoe
Secondary Seal	Rim-mounted
Deck Characteristics	
Deck Fitting Category:	Detail
Deck Type:	Welded
Deck Fitting/Status	
Access Hatch (24-in, Diam.)/Bolted	1 Cover. Gasketed
Automatic Gauge Float Well/Bolted	d Cover, Gasketed
Column Well (24-in, Diam.)/Pipe C	olFlex. Fabric Sleeve Seal

I TANK 598 UB/topa/tonk 0.30tons/42 2570

1 16

1

69

1

1

Deck Fitting/Status	Quantity
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1
Automatic Gauge Float Well/Bolted Cover, Gasketed	1
Column Well (24-in. Diam.)/Pipe ColFlex. Fabric Sleeve Seal	16
Ladder Well (36-in. Diam.)/Sliding Cover, Gasketed	1
Roof Leg (3-in. Diameter)/Fixed	69
Slotted Guide-Pole/Sample Well/Gask. Sliding Cover, w. Pole Sleeve, Wiper	1
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1

Meterological Data used in Emissions Calculations: Brownsville, Texas (Avg Atmospheric Pressure = 14.72 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Centurion Brownsville 150 M in Reformate - Internal Floating Roof Tank

		Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp	Vapor	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Reformate	Jan	68.71	64.20	73.21	73.84	0.4347	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Feb	70.34	65.41	75.27	73.84	0.4562	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Mar	73.56	68.35	78.76	73.84	0.5010	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Apr	76.73	71.57	81.89	73.84	0.5487	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	May	78.98	73.94	84.01	73.84	0.5848	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Jun	80.56	75.26	85.87	73.84	0.6115	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Jul	81.31	75.68	86.94	73.84	0.6244	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Aug	81.09	75.54	86.64	73.84	0.6207	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Sep	79.55	74.50	84.61	73.84	0.5944	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Oct	76.57	71.42	81.72	73.84	0.5463	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Nov	73.02	68.25	77.80	73.84	0.4933	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44
Reformate	Dec	69.82	65.31	74.33	73.84	0.4493	N/A	N/A	114.0000			114.00	Option 2: A=6.851, B=1307.882, C=217.44

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Centurion Brownsville 150 M in Reformate - Internal Floating Roof Tank

Month	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (Ib):	7,1780	7,5378	8,2906	9.0958	9,7070	10.1597	10.3787	10.3144	9.8696	9.0543	8.1614	7.4215
Seal Easter A (Ib-mole/ff-vr)	0,6000	0 6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Seal Factor B (Ib-mole/ff-vr (mph)^n)	0.4000	0.4000	0.4000	0.4000	0,4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Value of Vapor Pressure Function	0.0075	0.0079	0.0087	0.0095	0.0101	0.0106	0.0108	0.0108	0.0103	0.0095	0.0085	0.0078
Value of Paper Pressure at Daily Average Liquid												
Surface Temperature (nsia)	0.4347	0.4562	0.5010	0.5487	0.5848	0.6115	0.6244	0.6207	0.5944	0.5463	0.4933	0.4493
Tank Diameter (ft)	168,0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000	168.0000
Vanor Molecular Weight (lb/lb-mole):	114,0000	114.0000	114,0000	114,0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
								00.0000	00.0000	20.0669	20.0669	20.0668
Withdrawal Losses (lb):	20.0668	20.0668	20.0668	20.0668	20.0008	20.0000	20.0000	20.0000	20.0000	16.0000	16 0000	16,0000
Number of Columns:	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	10.000	0 7000	0 7000	0.0000	0.0000
Effective Column Diameter (ft):	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	2 425 000 00004	0.7000	2 125 000 00001	2 125 000 0000	13 125 000 00001	3 125 000 0000
Net Throughput (gal/mo.):	13,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	3,125,000.00001	13,125,000.00001	3,123,000.00001	3, 123,000.0000 I	0.0016	0.0015	0.0015	0.0015
Shell Clingage Factor (bbl/1000 sqft):	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	7 1500	7 1500	7 1500	7 1500	7 1500	7 1500
Average Organic Liquid Density (lb/gal):	7.1500	7.1500	7.1500	7.1500	7.1500	7.1500	1.1000	169,0000	169,0000	169,0000	169,0000	168,0000
Tank Diameter (ft):	168.0000	168.0000	168.0000	168.0000	168.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000
Deck Fitting Losses (lb):	16,7272	17.5657	19.3201	21.1966	22.6207	23.6758	24.1860	24.0362	22.9997	21.0999	19.0191	17.2948
Value of Vapor Pressure Function:	0.0075	0.0079	0.0087	0.0095	0.0101	0.0106	0.0108	0.0108	0.0103	0.0095	0.0085	0.0078
Vapor Molecular Weight (lb/lb-mole):	114,0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000	114.0000
Product Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	234.9000	234,9000	234.9000	234.9000	234.9000	234,9000	234.9000	234.9000	234.9000	234.9000	234.9000	234.9000
Deels Seem Leases (Ib):	0.0000	0 0000	0 0000	0.0000	0 0000	0000 0	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Longth (ft):	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Loss por Unit Longth	0,0000	0.0000	0.0000	0.0000		••••••						
Easter (Ib molofft vr):	0 0000	0.0000	0 0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000
Pactor (ID-Hildich(-yr)).	0.0000	0.0000	0,0000	0.0000	0,0000	0,0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000
Terek Diemeter (#):	168.0000	168,0000	168,0000	168,0000	168,0000	168 0000	168 0000	168 0000	168,0000	168,0000	168.0000	168.0000
Tank Diameter (It).	114,0000	114 0000	114 0000	114 0000	114 0000	114 0000	114 0000	114 0000	114.0000	114.0000	114.0000	114.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total Losses (lb):	43.9720	45.1703	47.6776	50.3592	52.3945	53.9024	54.6315	54.4174	52.9361	50.2210	47.2473	44.7832
							Roof Fitting Los	ss Factors		-	Leases/lb)	
Roof Fitting/Status				Q	uantity	KFa(ID-mole/yr		(yr mpn~n))			LOSSES(ID)	
Access Hatch (24-in. Diam.)/Bolted Cover, Gas	sketed				1	1.60	0	0.00		0.00	1.7025	
Automatic Gauge Float Well/Bolted Cover, Gas	sketed				1	2.8	0	0.00		0.00	2.9793	
Column Well (24-in. Diam.)/Pipe ColFlex. Fat	bric Sleeve Seal				16	10.0	D	0.00		0.00	170.2458	
Ladder Well (36-in. Diam.)/Sliding Cover, Gasl	keted				<u>,</u> 1	56.0	0	0.00		0.00	59.5860	
Roof Leg (3-in. Diameter)/Fixed					69	0.0	0	0.00		0.00	0.0000	
Slotted Guide-Pole/Sample Well/Gask. Sliding	Cover, w. Pole Sleeve	Wiper			1	8.3	D	4.40		1.60	8.8315	
Vacuum Breaker (10-in. Diam.)/Weighted Med	h. Actuation, Gask.				1	6.2	0	1.20		0.94	6.5970	

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Centurion Brownsville 150 M in Reformate - Internal Floating Roof Tank

	Losses(lbs)											
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions							
Reformate	107.17	240.80	249.74	0.00	597.71							

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

	Emissions Report - Detail Format	2 TANKS	
Identification User Identification: City: State: Company: Type of Tank: Description: Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n):	Tank Indentification and Physical Characteristics Centurion Brownsville 250 M in Gasoline Internal Floating Roof Tank Total of 2 tank this size, each one's emissions estimated at 20 TO/tank Assume 11.5 rvp Gasoline 224.00 10,500,000.00 20.00 N	7904 LB/yr/ 3.95 tons/yr 20TO 11.5 RVP	tank Atonk
No. of Columns: Eff. Col. Diam. (ft): Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	31.00 0.70 Light Rust White/White Good White/White Good		
Rim-Seal System Primary Seal: Secondary Seal Deck Characteristics Deck Fitting Category: Deck Type:	Mechanical Shoe Rim-mounted Detail Welded		\bigcirc
Deck Fitting/Status Access Hatch (24-in. Diam.)/Boltec Automatic Gauge Float Well/Boltec Column Well (24-in. Diam.)/Pipe C Roof Leg (3-in. Diameter)/Fixed Slotted Guide-Pole/Sample Well/G	l Cover, Gasketed l Cover, Gasketed olFlex. Fabric Sleeve Seal ask. Sliding Cover, w. Pole Sleeve,Wiper	Quantity 2 2 31 112 2	

Meterological Data used in Emissions Calculations: Brownsville, Texas (Avg Atmospheric Pressure = 14.72 psia)

Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Ladder Well (36-in. Diam.)/Sliding Cover, Gasketed

2

2 2

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Centurion Brownsville 250 M in Gasoline - Internal Floating Roof Tank

		Da Tem	aily Liquid S perature (d	unf. ∋g F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 11.5)	Jan	68.71	64.20	73.21	73.84	7.1313	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Feb	70.34	65.41	75.27	73.84	7.3482	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Mar	73,56	68.35	78.76	73.84	7.7901	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Apr	76.73	71.57	81.89	73.84	8.2463	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	May	78.98	73.94	84.01	73.84	8.5825	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Jun	80.56	75.26	85.87	73.84	8.8264	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Juí	81.31	75.68	86.94	73.84	8.9429	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Aua	81.09	75.54	86.64	73.84	8.9088	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Sep	79.55	74.50	84.61	73.84	8.6706	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Oct	76.57	71.42	81.72	73.84	8.2231	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Nov	73.02	68.25	77.80	73.84	7.7153	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3
Gasoline (RVP 11.5)	Dec	69.82	65.31	74.33	73.84	7.2786	N/A	N/A	65.0000			92.00	Option 4: RVP=11.5, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Centurion Brownsville 250 M in Gasoline - Internal Floating Roof Tank

Month	January	February	March	April	May	June	July	August	September	October	November	December
Dim Soal Losses (lb):	119,5211	124,6531	135.5456	147.4755	156.7612	163.7885	167.2354	166.2198	159.2698	146.8527	133.6601	122.9904
Seal Eactor A (Ib-mole/ff-vr)	0.6000	0.6000	0,6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Seal Factor B (Ib-mole/ff-vr (moh)^n)	0,4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Value of Venor Pressure Function:	0.1642	0.1712	0.1862	0.2026	0.2153	0.2250	0.2297	0.2283	0.2188	0.2017	0.1836	0.1689
Vanor Pressure at Daily Average Liquid											7 7460	7 0700
Surface Temperature (psia):	7.1313	7.3482	7.7901	8.2463	8.5825	8.8264	8.9429	8.9088	8.6706	8.2231	7.7153	7.2700
Tank Diameter (ft):	224,0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000
Vapor Molecular Weight (lb/lb-mole):	65.0000	65.0000	65.0000	65.0000	65.0000	65,0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
										40.4040	40 4049	46 4649
Withdrawal Losses (lb):	16.1618	16.1618	16.1618	16.1618	16.1618	16.1618	16.1618	16.1618	16,1618	10.1010	10,1010	24 0000
Number of Columns:	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000	0 7000
Effective Column Diameter (ft):	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	7 500 000 00001	7 500 000 0000
Net Throughput (gal/mo.):	17,500,000.000017	,500,000.000017	,500,000.000017	,500,000.000017	,500,000.00001	7,500,000.000017	,500,000.000017,	,500,000.000017	,500,000.000017	,500,000.00001	7,500,000.00001.	0.0015
Sheli Clingage Factor (bbi/1000 sqft):	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	5,6000	5,6000	5 6000	5 6000
Average Organic Liquid Density (lb/gal):	5.6000	5.6000	5,6000	5.6000	5.6000	5.6000	5.6000	5.6000	0000.0	224 0000	224 0000	224 0000
Tank Diameter (ft):	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000
					500 0000	500 0 400	670 10/0	569 6509	544 8827	502 4023	457 2686	420 7664
Deck Fitting Losses (lb):	408.8974	426.4544	463.7194	504.5330	535.3006	0.0050	0 2007	0 2292	0.2188	0 2017	0 1836	0 1689
Value of Vapor Pressure Function:	0.1642	0.1712	0.1862	0.2026	0.2153	0.2200	0.2297	65 0000	65,0000	65,0000	65 0000	65 0000
Vapor Molecular Weight (lb/lb-mole):	65.0000	65.0000	65.0000	65.0000	65.0000	4 0000	1 0000	1 0000	1 0000	1 0000	1 0000	1.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	460,9000	459,8000	459 8000	459 8000	459 8000	459,8000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	459.8000	459.8000	459.8000	459.8000	459.6000	459.0000	455.0000	433.0000	400.0000	400.0000	100.0000	
	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Losses (ID):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Lengur (it).	0.0000	0.0000	0.0000									
Easter (Ib molo/ft.vr):	0 0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Pactor (ID-molent-yr).	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tenk Diemeter (#):	224 0000	224 0000	224,0000	224,0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000
Vener Melecular Melecht (Ib/Ib-mole):	65,0000	65.0000	65.0000	65,0000	65,0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000
Product Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	E 4 4 E 900	667 2603	615 4268	668 1703	709 2236	740 2923	755.5315	751.0414	720.3143	665.4168	607.0905	559.9186
Total Losses (ID):	<u></u>	307.2033	010.4200	000.1100			Roof Fitting Loss	s Factors				
Roof Fitting/Status				Q	uantity	KFa(lb-mole/yr)	KFb(lb-mole/()	yr mph^n))		m	Losses(lb)	
Assess Heteb (24 in Diem)/Bolted Cover Gas	keted				2	1.60		0.00		0.00	41.5538	
Access Haldin (24-III. Dialit. //Bolted Cover, Gas	kotod				2	2.80		0.00		0.00	72.7192	
Automatic Gauge Float Well/Bolled Cover, Gas	ric Sloove Seel				31	10.00		0.00		0.00	4,025.5274	
Column well (24-in, Diam. /ripe ColFlex, rabi	10 0100VC 0001				112	0.00		0.00		0.00	0.0000	
Rooi Ley (3-11). Diameter / Fixed Statted Cuide Bolo/Sample Well/Gask Stidios (Cover w Pole Sleeve	Wiper			2	8.30		4.40		1.60	215.5605	
Vorum Brecker (10-in Diam)Meinhed Mech	Actuation Gask				2	6.20		1.20		0.94	161.0211	
Ladder Wall (26 in Diam)/Sliding Cover Gask	ated				2	56.00		0.00		0.00	1,454.3841	

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Centurion Brownsville 250 M in Gasoline - Internal Floating Roof Tank

	Losses(lbs)											
Components	Rim Seal Loss	Withdrawi Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions							
Gasoline (RVP 11.5)	1,743.97	193.94	5,966.36	0.00	7,904.28							
4 TANKS

Quantity

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

CENTURION BROWNSVILLE 250 M IN ULSD User Identification: City: State: Company: Internal Floating Roof Tank Type of Tank: Total of 4 tank, each one emissions estimated at 24 TO/tank Description:

Tank Dimensions

Diameter (ft):		224.00
Volume (gallons):		10,500,000.00
Turnovers:		24.00
Self Supp. Roof? (y/n):	N	
No. of Columns:		31.00
Eff. Col. Diam. (ft):		0.70

Light Rust

Good

Good

White/White

White/White

310 16/42/tonk 0.16tons/42/tonk 24TO

Paint Characteristics	
Internal Shell Condition	Ľ

Internal Shell Condition:	
Shell Color/Shade:	
Shell Condition	
Roof Color/Shade:	
Roof Condition:	

Rim-Seal System

-

Primary Seal:	Mechanical Shoe
Secondary Seal	Rim-mounted

Deck Characteristics

Deck Fitting Category:	Detail
Deck Type:	Welded

Access Hatch (24-in, Diam,)/Bolted Cover, Gasketed	2
Automatic Gauge Float Well/Bolted Cover, Gasketed	2
Column Well (24-in, Diam.)/Pipe ColFlex, Fabric Sleeve Seal	31
Roof Len (3-in Diameter)/Fixed	112
Slotted Guide-Pole/Sample Well/Gask. Sliding Cover, w. Pole Sleeve, Wiper	2
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	2
Ladder Well (36-in. Diam.)/Sliding Cover, Gasketed	2

Meterological Data used in Emissions Calculations: Brownsville, Texas (Avg Atmospheric Pressure = 14.72 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

CENTURION BROWNSVILLE 250 M IN ULSD - Internal Floating Roof Tank

		Da Tem	aily Liquid So perature (de	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	Jan	68.71	64.20	73.21	73.84	0.0087	N/A	N/A	130.0000			188.00	Option 1: VP60 = .0065 VP70 = .009
Distillate fuel oil no. 2	Feb	70.34	65.41	75.27	73.84	0.0091	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no 2	Mar	73.56	68.35	78.76	73.84	0.0101	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no 2	Apr	76.73	71.57	81.89	73.84	0.0110	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Mav	78.98	73.94	84.01	73.84	0.0117	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Jun	80.56	75.26	85.87	73.84	0.0122	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Jul	81.31	75.68	86.94	73.84	0.0125	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Aug	81.09	75.54	86.64	73.84	0.0124	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Sep	79.55	74.50	84.61	73.84	0.0119	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Oct	76.57	71.42	81.72	73.84	0.0110	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Nov	73.02	68.25	77.80	73.84	0.0099	N/A	N/A	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Dec	69.82	65.31	74.33	73.84	0.0090	N/A	N/A	130.0000			188.00	Option 1: VP60 = .0065 VP70 = .009

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

CENTURION BROWNSVILLE 250 M IN ULSD - Internal Floating Roof Tank

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (lb):	0.2147	0.2252	0.2491	0.2726	0.2893	0.3025	0.3099	0.3077	0.2936	0.2714	0.2451	0.2216
Seal Factor A (lb-mole/ft-yr):	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Value of Vapor Pressure Function:	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	0.0087	0.0091	0.0101	0.0110	0.0117	0.0122	0.0125	0.0124	0.0119	0.0110	0.0099	0.0090
Tank Diameter (ft):	224.0000	224.0000	224.0000	224.0000	224,0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000
Vapor Molecular Weight (lb/lb-mole):	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Withdrawal Losses (lb):	24.5890	24.5890	24.5890	24.5890	24.5890	24.5890	24.5890	24.5890	24.5890	24.5890	24.5890	24.5890
Number of Columns:	31,0000	31,0000	31,0000	31.0000	31,0000	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000	31.0000
Effective Column Diameter (ft):	0.7000	0.7000	0,7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0,7000	0.7000	0.7000
Net Throughout (gal/mo.):	21,000,000,000021	.000.000.00002	1.000.000.00002	1,000,000,00002	1,000,000.00002	1,000,000.00002	1,000,000.00002	1,000,000.00002	21,000,000.00002	1,000,000.00002	1,000,000.00002	1,000,000.0000
Shell Clingage Factor (bbl/1000 soft):	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Average Organic Liquid Density (lb/gal):	7,1000	7,1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000
Tank Diameter (ft):	224.0000	224.0000	224.0000	224,0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000
Deck Fitting Losses (Ib):	07344	0.7704	0.8521	0.9326	0.9897	1.0349	1.0602	1.0528	1.0044	0,9286	0.8385	0.7580
Value of Vapor Pressure Function:	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Vapor Molecular Weight (Ib/lb-mole):	130 0000	130,0000	130,0000	130.0000	130.0000	130.0000	130.0000	130,0000	130.0000	130.0000	130.0000	130.0000
Product Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	459.8000	459.8000	459.8000	459.8000	459.8000	459.8000	459.8000	459.8000	459.8000	459.8000	459.8000	459.8000
Deck Seam Losses (lb):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length (ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Loss per Unit Length												
Factor (lb-mole/ft-vr);	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length Factor(ft/soft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tank Diameter (ft):	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000	224.0000
Vapor Molecular Weight (ib/ib-mole):	130,0000	130.0000	130.0000	130,0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130,0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total Losses (lb):	25.5380	25.5846	25.6901	25.7942	25.8680	25.9264	25.9590	25.9495	25.8870	25.7890	25.6726	25.5685
				·			Roof Fitting Los	s Factors				
Roof Fitting/Status				Q	uantity	KFa(lb-mole/yr) KFb(lb-mole/	(yr mph^n))		m	Losses(lb)	
Access Hatch (24-in, Diam.)/Bolted Cover, Gas	sketed				2	1.6	D	0.00		0.00	0.0763	
Automatic Gauge Float Well/Bolted Cover, Gas	sketed				2	2.8	D	0.00		0.00	0.1336	
Column Well (24-in, Diam.)/Pipe ColFlex. Fab	pric Sleeve Seal				31	10.0	D	0.00		0.00	7.3930	
Roof Leg (3-in. Diameter)/Fixed					112	0.0	D	0.00		0.00	0.0000	
Slotted Guide-Pole/Sample Well/Gask. Sliding	Cover, w. Pole Sleeve.	Wiper			2	8.3	0	4.40		1.60	0.3959	
Vacuum Breaker (10-in. Diam.)/Weighted Mech	h. Actuation, Gask.	•			2	6.2	D	1.20		0.94	0.2957	
Ladder Well (36-in. Diam.)/Sliding Cover, Gask	eted				2	56.0	D	0.00		0.00	2.6710	

TANKS 4.0 Report

)

)

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

CENTURION BROWNSVILLE 250 M IN ULSD - Internal Floating Roof Tank

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Distillate fuel oil no. 2	3.20	295.07	10.96	0.00	309.23

TABLE 7(d)	
------------	--

02-95

INTERNAL FLOATING ROOF STORAGE TANK SUMMARY Tank T-250-2 will be built exactly the same as T-250-1

I. Tank Identification (Use a separate form for each tank).
1. Applicant's Name: CMG Brownsville II LLC
2. Location (<i>indicate on plot plan and provide coordinates</i>): 663/34 E 28/2057 N
3. Tank No. <u>T-250-1</u> 4. Emission Point No. 1-250-1
5. FIN <u>Tank T-250-1</u> CIN
6. Status: New tank [X] Altered tank [] Relocation [] Change of Service []
Previous permit or exemption number(s)
II Tank Physical Characteristics
1 Dimensions
a Shell Height: 48 ft.
h Diameter: 224 ft.
c Nominal Canacity or Tank Volume: 250 M BBLS gallons.
d. Turnovers per vear: 20
e. Net Throughput : ESTIMATED 5,000,000 BBLS/YR gallons/year.
f. Maximum Pumping Rate: 20,000 BBL/HR gallons/hour. (Use the higher of the maximum fill
rate or maximum withdrawal rate.)
g. Self-Supporting Roof? Yes [] No [X]
h. Number of Columns: <u>31</u>
i. Column Diameter: <u>0.7</u> ft.
2. Shell/Roof and Paint Characteristics
a. Shell Condition : Light Rust [X] Dense Rust [] Gunite Lining []
b. Shell Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)
c. Shell Condition : Good [X] Poor []
d. Roof Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)
e. Roof Condition : Good [X] Poor []
3. Rim-Seal System
a. Primary Seal: Vapor-mounted [] Liquid-mounted [] Mechanical Shoe [A]
b. Secondary Seal : Yes [X] No []
4. Deck Characteristics
a. Deck Type: Bolted [] Welded [X]
b. Deck Construction (Bolted Tanks Only):
Continuous Sheet Construction 5 ft. wide []
Continuous Sheet Construction 7 ft, wide
Destengular Panel Construction 5 X 7 5 ft wide []
Rectangular Panel Construction 5 X 12 ft wide []
Dool: Soom Length (Bolted Tanks Only):
5. Deef Eitting Loss Eastor: 545 lb-mole/year
Based upon Typical [] Controlled [] or Actual [X] fittings
Complete Section IV Fittings Information to record fittings count used to calculate the roof fitting loss
factor
jucior.

Permit No Tank No. T-250-1 _	
III. Liquid Properties of Stored Material See Tanks 4.09 for Details	
1. Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude (Dils []
2. Single or Multi-Component Liquid	
Single []Complete Section III.3	
Multiple [] Complete Section III.4	
3. Single Component Information	
a. Chemical Name: Gasoline	
b. CAS Number:	
d. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
e. Liquid Molecular Weight:	
4. Multiple Component Information	
a. Mixture Name: Heavy Condensate	
b. Average Liquid Surface Temperature: °F.	
c. Minimum Liquid Surface Temperature: °F.	
d. Maximum Liquid Surface Temperature: °F.	
e. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
f. True Vapor Pressure at Minimum Liquid Surface Temperature:	psia.
g. True Vapor Pressure at Maximum Liquid Surface Temperature:	psia.

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight(typical	Molecular Weight

Permit No. Tank No. T-250-1 IV. Fittings Information SEE TANKS 4.09 PRINTOUT FOR DETAILS

				Quantity
Fitting Type	Fitting Status	Quantity	KF	X KF
Access Hatch (24-in. Diam.)	Bolted Cover, Gasketed		1.6	
Access Hatch (24-in. Diam.)	Unbolted Cover, Gasketed		11	
Access Hatch (24-in. Diam.)	Unbolted Cover, Ungasketed		25	
Automatic Gauge Float Well	Bolted Cover, Gasketed		2.8	
Automatic Gauge Float Well	Unbolted Cover, Gasketed		15	
Automatic Gauge Float Well	Unbolted Cover, Ungasketed		28	
Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Gask.		33	
.Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Ungask.		47	
Column Well (24-in.Diam.)	Pipe ColFlex. Fabric Sleeve Seal		10	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Gask.	ļ	25	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Ungask.		32	
Ladder Well (36-in. Diam.)	Sliding Cover, Ungasketed		76	
Ladder Well (36-in. Diam.)	Sliding Cover, Gasketed		56	
Roof Leg or Hanger Well	Adjustable		7.9	
Roof Leg or Hanger Well	Fixed		0	
Sample Pipe or Well (24-in. Diam.)	Slit Fabric Seal 10% Open		12	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Gask.		44	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Ungask.		57	
Stub Drain (1-in. Diam.)			1.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Gask.		6.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Ungask.		0.9	
Total deck fitting loss factor, lb-mole/year				

INTERNAL FLOATING ROOF STORAGE TANK SUMMARY Tank T-250-4, T-250-5 and T-250-6 will be built exactly the same as T-250-3

Tank Identification (Use a separate form for each tank).
1 Applicant's Name: CMG Brownsville II LLC
1. Applicant's Name. Civil Blownsvine in <u>BLO</u> 2. Logation (indigate on plot plan and provide coordinates): 663739 E_2871955 N
2. Location (<i>Indicate on piot pian and provide coordinates</i>), objects 2 - 201-201-201-201-201-201-201-201-201-201-
5. FIN Tank T-250-3 CIN
6 Status: New tank [X] Altered tank [] Relocation [] Change of Service []
Previous permit or exemption number(s)
II. Tank Physical Characteristics
1. Dimensions
a. Shell Height : <u>48</u> ft.
b. Diameter: <u>224</u> ft.
c. Nominal Capacity or Tank Volume: <u>250 M BBLS</u> gallons.
d. Turnovers per year: <u>24</u>
e. Net Throughput :ESTIMATED 6,000,000 BBLS/YR gallons/year.
f. Maximum Pumping Rate: 28,000 <u>BBL/HR</u> gallons/hour. (Use the higher of the maximum fill
rate or maximum withdrawal rate.)
g. Self-Supporting Roof? Yes [] No [X]
h. Number of Columns: <u>31</u>
i. Column Diameter: <u>0.7</u> ft.
2. Shell/Roof and Paint Characteristics
a. Shell Condition : Light Rust [X] Dense Rust [] Gunite Lining []
b. Shell Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)
c. Shell Condition : Good [X] Poor []
d. Roof Color/Shade: White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)
e. Roof Condition : Good [X] Poor []
3. Rim-Seal System
a. Primary Seal: Vapor-mounted [] Liquid-mounted [] Mechanical Shoe [A]
b. Secondary Seal : Yes [X] No []
4. Deck Characteristics
a. Deck Type: Bolted [] Welded [X]
b. Deck Construction (Bolted Tanks Only):
Continuous Sheet Construction 5 II. wide []
Continuous Sheet Construction 6 II. wide []
Continuous Sneet Construction / II. wide []
Rectangular Panel Construction 5 X 1.2 ft. wide []
Rectangular Panel Construction 5 X 12 II. wide []
c. Deck Seam Length (Bolted Tanks Only): II.
5. KOOI FITTING LOSS FACTOR: ID-IIIOIC/year
Based upon Typical [] Controlled [] of Actual [A] multips
Complete Section IV, Fittings information, to record fittings count used to calculate the roof fitting toss
Jactor.

Permit	No Tank No. T-250-3	
III. Liqu	id Properties of Stored Material See Tanks 4.09 for Details	
1. C	Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude Oils []]
2. S	ingle or Multi-Component Liquid	
S	Single []Complete Section III.3	
h	Nultiple [] Complete Section III.4	
3. 5	Single Component Information	
C	a. Chemical Name: Diesel Fuel	
k	o. CAS Number:	
C	d. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
e	e. Liquid Molecular Weight:	
4. 1	Multiple Component Information	
(a. Mixture Name: Heavy Condensate	
I	b. Average Liquid Surface Temperature: °F.	
(c. Minimum Liquid Surface Temperature: °F.	
(d. Maximum Liquid Surface Temperature: °F.	
(e. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
•	f. True Vapor Pressure at Minimum Liquid Surface Temperature:	psia.
!	g. True Vapor Pressure at Maximum Liquid Surface Temperature:	psia.
	h. Liauid Molecular Weight:	

. Chemical Components Information

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight(typical	Molecular Weight

_

Permit No.

Tank No. **T-250-3**

IV. Fittings Information SEE TANKS 4.09 PRINTOUT FOR DETAILS

				Quantity
Fitting Type	Fitting Status	Quantity	KF	X KF
Access Hatch (24-in. Diam.)	Bolted Cover, Gasketed		1.6	
Access Hatch (24-in. Diam.)	Unbolted Cover, Gasketed		11	
Access Hatch (24-in. Diam.)	Unbolted Cover, Ungasketed		25	
Automatic Gauge Float Well	Bolted Cover, Gasketed		2.8	
Automatic Gauge Float Well	Unbolted Cover, Gasketed		15	
Automatic Gauge Float Well	Unbolted Cover, Ungasketed		28	
Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Gask.		33	
.Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Ungask.		47	
Column Well (24-in.Diam.)	Pipe ColFlex. Fabric Sleeve Seal		10	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Gask.		25	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Ungask.		32	
Ladder Well (36-in. Diam.)	Sliding Cover, Ungasketed		76	
Ladder Well (36-in. Diam.)	Sliding Cover, Gasketed		56	
Roof Leg or Hanger Well	Adjustable		7.9	
Roof Leg or Hanger Well	Fixed		0	
Sample Pipe or Well (24-in. Diam.)	Slit Fabric Seal 10% Open		12	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Gask.		44	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Ungask.		57	
Stub Drain (1-in. Diam.)			1.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Gask.		6.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Ungask.		0.9	
	 T	otal deck fitting	loss factor,	lb-mole/yea

TABLE	7(d)
-------	------

02-95

INTERNAL FLOATING ROOF STORAGE TANK SUMMARY Tank T-250-4, T-250-5 and T-250-6 will be built exactly the same as T-250-3

I. Tank Identification (Use a separate form for each tank).
1. Applicant's Name: CMG Brownsville II LLC
2 Location (indicate on plot plan and provide coordinates): 663739 E 2871955 N
3 Tank No. T-250-3 4. Emission Point No. T-250-3
5 FIN Tank T-250-3 CIN
6. Status: New tank [X] Altered tank [] Relocation [] Change of Service []
Previous permit or exemption number(s)
II. Tank Physical Characteristics
1. Dimensions
a. Shell Height : <u>48</u> ft.
b. Diameter: <u>224</u> ft.
c. Nominal Capacity or Tank Volume: <u>250 M BBLS</u> gallons.
d. Turnovers per year: <u>24</u>
e. Net Throughput :ESTIMATED 6,000,000 BBLS/YR gallons/year.
f. Maximum Pumping Rate: 28,000 <u>BBL/HR</u> gallons/hour. (Use the higher of the maximum fill
rate or maximum withdrawal rate.)
g. Self-Supporting Roof? Yes [] No [X]
h. Number of Columns: <u>31</u>
i. Column Diameter: ft.
2. Shell/Roof and Paint Characteristics
a. Shell Condition : Light Rust [X] Dense Rust [] Gunite Lining []
b. Shell Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)
c. Shell Condition : Good [X] Poor []
d. Roof Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)
e. Roof Condition : Good [X] Poor []
3. Rim-Seal System
a. Primary Seal: Vapor-mounted [] Liquid-mounted [] Mechanical Shoe [A]
b. Secondary Seal : Yes [X] No []
4. Deck Characteristics
a. Deck Type: Bolted [] Welded [X]
b. Deck Construction (Bolted Tanks Only):
Continuous Sheet Construction 5 II. wide []
Continuous Sheet Construction of It. wide
Continuous Sneet Construction 7 II. wide []
Rectangular Panel Construction 5 X 12 ft wide []
Rectangular Panel Construction 5 A 12 It. while []
c. Deck Seam Length (Bolted Tanks Only):1.
5. KOOI FILLING LOSS FACTOR: ID-IIIOIC/year Decodemon Transical [] Controlled [] or Actual [X] fittings
Based upon Typical [] Controlled [] of Actual [A] mungs
Complete Section IV, Fullings Information, to record julings count used to calculate the roof fulling toss
jacior.

Permit No	Tank No. T-250-3		
III. Liquid Properties	of Stored Material See Tanks 4.09	for Details	
1. Chemical Co	ategory: Organic Liquids [] Petroleu	ım Distillates [X] Crude	Oils []
2. Single or Mul	li-Component Liquid		
Single []Co	mplete Section III.3		
Multiple []	Complete Section III.4		
3. Single Comp	onent Information		
a. Chemica	Name: Diesel Fuel		
b. CAS Num	ber:		
d. True Vap	or Pressure at Average Liquid Surfac	e Temperature:	psia.
e. Liquid Mo	blecular Weight:		
4. Multiple Cor	nponent Information		
a. Mixture N	ame: Heavy Condensate		
b. Average	Liquid Surface Temperature:	°F.	
c. Minimum	Liquid Surface Temperature:	°F.	
d. Maximur	n Liquid Surface Temperature:	°F.	
e. True Vap	or Pressure at Average Liquid Surfac	e Temperature:	psia.
f. True Vap	or Pressure at Minimum Liquid Surfac	ce Temperature:	psia.
a. True Vap	or Pressure at Maximum Liquid Surfc	ice Temperature:	psia.
U 1			

. Chemical Components Information

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight(typical	Molecular Weight

_

Tank No. T-250-3 SEE TANKS 4.09 PRINTOUT FOR DETAILS Permit No. _____ IV. Fittings Information

				Quantity
Fitting Type	Fitting Status	Quantity	KF	X KF
Access Hatch (24-in. Diam.)	Bolted Cover, Gasketed		1.6	
Access Hatch (24-in. Diam.)	Unbolted Cover, Gasketed		11	
Access Hatch (24-in. Diam.)	Unbolted Cover, Ungasketed		25	
Automatic Gauge Float Well	Bolted Cover, Gasketed		2.8	
Automatic Gauge Float Well	Unbolted Cover, Gasketed		15	
Automatic Gauge Float Well	Unbolted Cover, Ungasketed		28	
Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Gask.		33	
.Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Ungask.		47	
Column Well (24-in.Diam.)	Pipe ColFlex. Fabric Sleeve Seal		10	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Gask.		25	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Ungask.		32	
Ladder Well (36-in. Diam.)	Sliding Cover, Ungasketed		76	
Ladder Well (36-in. Diam.)	Sliding Cover, Gasketed		56	
Roof Leg or Hanger Well	Adjustable		7.9	
Roof Leg or Hanger Well	Fixed		0	
Sample Pipe or Well (24-in. Diam.)	Slit Fabric Seal 10% Open		12	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Gask.		44	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Ungask.		57	
Stub Drain (1-in. Diam.)			1.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Gask.		6.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Ungask.		0.9	
	Tr	otal deck fitting	loss factor,	_i lb-mole/ye

 \bigcirc

INTERNAL FLOATING ROOF STORAGE TANK SUMMARY

Table 7(d) INTERNAL FLOATIN COOF TANK SUMMARY	
Permit No Tank No. T-150-1	
III. Liquid Properties of Stored Material See Tanks 4.09 for Details	
1. Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude	Oils []
2. Single or Multi-Component Liquid	
Single []Complete Section III.3	
Multiple [] Complete Section III.4	
3. Single Component Information	
a. Chemical Name: Gasoline Blendstock – including Reformate	
b. CAS Number:	
d. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
e. Liquid Molecular Weight:	
4. Multiple Component Information	
a. Mixture Name: Heavy Condensate	
b. Average Liquid Surface Temperature:°F.	
c. Minimum Liquid Surface Temperature: °F.	
d. Maximum Liquid Surface Temperature: °F.	
e. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
f. True Vapor Pressure at Minimum Liquid Surface Temperature:	psia.
g. True Vapor Pressure at Maximum Liquid Surface Temperature:	psia.
h. Liquid Molecular Weight:	

. Chemical Components Information

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight(typical	Molecular Weight

Permit No.

Tank No. **T-150-1**

SEE TANKS 4.09 PRINTOUT FOR DETAILS

IV. Fittings Information

			Deck fitting loss factor	Quantity	
Fitting Type	Fitting Status	Quantity	KF	X KF	
Access Hatch (24-in. Diam.)	Bolted Cover, Gasketed		1.6		
Access Hatch (24-in. Diam.)	Unbolted Cover, Gasketed		11		
Access Hatch (24-in. Diam.)	Unbolted Cover, Ungasketed		25		
Automatic Gauge Float Well	Bolted Cover, Gasketed		2.8		
Automatic Gauge Float Well	Unbolted Cover, Gasketed		15		
Automatic Gauge Float Well	Unbolted Cover, Ungasketed		28		
Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Gask.		33		
.Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Ungask.		47		
Column Well (24-in.Diam.)	Pipe ColFlex. Fabric Sleeve Seal		10		
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Gask.		25		
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Ungask.		32		
Ladder Well (36-in. Diam.)	Sliding Cover, Ungasketed		76		
Ladder Well (36-in. Diam.)	Sliding Cover, Gasketed		56		
Roof Leg or Hanger Well	Adjustable		7.9		
Roof Leg or Hanger Well	Fixed		0		
Sample Pipe or Well (24-in. Diam.)	Slit Fabric Seal 10% Open		12		
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Gask.		44		
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Ungask.		57		
Stub Drain (1-in. Diam.)			1.2		
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Gask.		6.2		
			1		

Weighted Mech. Actuation, Ungask.

Total deck fitting loss factor, lb-mole/year

0.9

T

Т

Vacuum Breaker (10-in. Diam.)

		\bigcirc	TABLE 7(d)	\bigcirc
	INTER Tank	NAL FLOATING T-150-9 will be b u	ROOF STORAGE TA ailt exactly the same a	02-95 NK SUMMARY as T-150-5
I. Ta 1. 2. 3. 5. 6. Pr	Applicantification (Use a Applicant's Name: CM Location (indicate on plot Tank No. T-150-5FINTank T-150-5FINTank T-150-Status:New tank [X]evious permit or exemptio	separate form for G Brownsville II L of plan and provide 4. 5 Altered tank n number(s)	each tank). LC coordinates): 663959 Emission Point No. T CIN] Relocation []	E 2872016 N 150-5 Change of Service []
II. T 1. 2. 3 4	ank Physical Characteristant Dimensions a. Shell Height :	ics ft. ft. ft. Tank Volume: 15 25 ESTIMATED 3,7 Rate: 7,500 BBL/H withdrawal rate.) f? Yes [] No 16 0.7 ft. aracteristics Light Rust [X] White/White [X] ay/Medium [] food [X] No [] Welded[X] Solted Tanks Only) us Sheet Construct us Sheet Construct lar Panel Construct Bolted Tanks Only] :235 I Controlled [] itings Information,	<u>0 M BBLS</u> gallo <u>750,000 BBLS/YR</u> <u>IR</u> gallons/hou [X] Dense Rust [] Aluminum/Specu Red/Primer [] Other Poor [] Aluminum/Specu Red/Primer [] Other Poor [] Liquid-mounted [] [] Liquid-mounted [] [] Con 5 ft. wide	ons. gallons/year. r. (Use the higher of the maximum fill Gunite Lining [] ular [] Aluminum/Diffuse [] [] (Describe) ular [] Aluminum/Diffuse [] [] (Describe) Mechanical Shoe [X]]] itings nt used to calculate the roof fitting loss

T-150-5 Table 7d IFR.doc

Table 7(d) INTERNAL FLOATINC OOF Page 2	- TANK SUMMARY	\bigcirc		
Permit No Tank N	10. T-150-5			
III. Liquid Properties of Stored Materia	I See Tanks 4.09 for D	etails	· · · · · · · · · · · · · · · · · · ·	
1. Chemical Category: Organic L	iquids [] Petroleum D	istillates [X] Crude	Oils []	
2. Single or Multi-Component Liqu	id			
Single []Complete Section III.3	3			
Multiple [] Complete Section	111.4			
3. Single Component Information				
a. Chemical Name: Gasoline	Blendstock – Including	g Natural Gasoline (Condensate	
b. CAS Number:				
d. True Vapor Pressure at Avera	age Liquid Surface Te	mperature:	psia.	
e. Liquid Molecular Weight:	e. Liquid Molecular Weight:			
4. Multiple Component Information	on			
a. Mixture Name: Heavy Conc	densate			
b. Average Liquid Surface Temperature: °F.				
c. Minimum Liquid Surface Ten	nperature:	°F.		
d. Maximum Liquid Surface Ter	mperature:	°F.		
e. True Vapor Pressure at Aver	e. True Vapor Pressure at Average Liquid Surface Temperature: psia.			
f. True Vapor Pressure at Minin	f. True Vapor Pressure at Minimum Liquid Surface Temperature: psia.			
g. True Vapor Pressure at Maxi	g. True Vapor Pressure at Maximum Liquid Surface Temperature: psia.			
h. Liquid Molecular Weight:				
j. Chemical Components Information				
Chemical Name CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight(typical	Molecular Weight	

Permit No.

Tank No. **T-150-5**

IV. Fittings Information SEE TANKS 4.09 PRINTOUT FOR DETAILS

			Deck fitting loss factor	Quantity
Fitting Type	Fitting Status	Quantity	KF	X K _F
Access Hatch (24-in. Diam.)	Bolted Cover, Gasketed		1.6	
Access Hatch (24-in. Diam.)	Unbolted Cover, Gasketed		11	
Access Hatch (24-in. Diam.)	Unbolted Cover, Ungasketed		25	
Automatic Gauge Float Well	Bolted Cover, Gasketed		2.8	
Automatic Gauge Float Well	Unbolted Cover, Gasketed		15	
Automatic Gauge Float Well	Unbolted Cover, Ungasketed		28	
Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Gask.		33	
.Column Well (24-in.Diam.)	Built-Up Col. –Sliding Cover, Ungask.		47	
Column Well (24-in.Diam.)	Pipe ColFlex. Fabric Sleeve Seal		10	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Gask.		25	
Column Well (24-in.Diam.)	Pipe Col. –Sliding Cover, Ungask.		32	
Ladder Well (36-in. Diam.)	Sliding Cover, Ungasketed		76	
Ladder Well (36-in. Diam.)	Sliding Cover, Gasketed		56	
Roof Leg or Hanger Well	Adjustable		7.9	
Roof Leg or Hanger Well	Fixed		0	
Sample Pipe or Well (24-in. Diam.)	Slit Fabric Seal 10% Open		12	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Gask.		44	
Sample Pipe or Well (24-in. Diam.)	Slotted Pipe-Sliding Cover, Ungask.		57	
Stub Drain (1-in. Diam.)			1.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Gask.		6.2	
Vacuum Breaker (10-in. Diam.)	Weighted Mech. Actuation, Ungask.		0.9	
	Т-		and factor it	melekies

Total deck fitting loss factor, lb-mole/year

SHORT TERM MAX EMISSIONS FOR GASOLINE MARINE LOADING CENTURION T-250-1 250 M BBL CAPACITY IFR DIAMETER = 224 ft Withdrawal Loss lb/hr

0.775765 lb/hr

$Lw = 0.943 \times Q \times C \times W / D \times (1 + (Nc \times F/D))$

Nc = Support Columns	31
Fc = Effective column D	0.7
D (ft) =	224 ft

(1 + (Nc x F/D)) =	1.096875
Q (bbls/hr) =	20000 bbls/hr
C = clingage factor	0.0015
W (density) =	5.6 lb/gal
D (ft) =	224 ft
0.943 = (constant)	0.943

Lw = (lb/hr)

Standing Loss lb/hr

- Tanks 4.09
 Rim Seal Loss lb/month nominalize (/31/24)
 167.23 lb/mo (July)

 P* @ 87 F
 0.331806 lb/hr

 P* @ 95 F
 0.303337

 P*/P* Upcorrect
 1.31865

 Rim Seal Loss lb/hr
 0.437535
- 528.6 lb/mo (July) Tanks 4.09 Roof Fitting Loss lb/month 0.710484 lb/hr nominalize (/31/24) P* @ 87 F 0.230036 P* @ 95 F 0.303337 P*/P* Upcorrect 1.31865 Roof Fitting Loss lb/hr 0.93688 lb/hr 1.374415 lb/hr Total Standing Loss VP psia Liquid Temp F 95 10.5
 - 87 8.94

Maximum Short Term Loss 2.15018 lb/hr

SHORT TERM MAX EMISSIONS FOR DIESEL FUEL STORAGE TANK CENTURION T-250-3 100 M BBL WORKING CAPACITY IFR DIAMETER = 224 ft Withdrawal Loss Ib/hr

 $Lw = 0.943 \times Q \times C \times W / D \times (1 + (Nc \times F/D))$

Nc = Support Columns	31
Fc = Effective column D	0.7
D (ft) =	224 ft

$(1 + (Nc \times F/D)) =$	1.096875	
Q (bbls/hr) =	28000	bbls/hr
C = clingage factor	0.0015	
W (density) =	7.1	lb/gal
D (ft) =	224	ft
0.943 = (constant)	0.943	

Lw = (lb/hr)

1.376983 lb/hr

Standing Loss lb/hr

	Rim Seal Loss Ib/hr	0.000757
	P*/P* Upcorrect	1.230895
	P* @ 95 F	0.000272
	P* @ 87 F	0.000221
	nominalize (/31/24)	0.000615 lb/hr
Tanks 4.09	Rim Seal Loss Ib/month	0.31 lb/mo (July)

1.06 lb/mo (July) Tanks 4.09 Roof Fitting Loss lb/month 0.001425 lb/hr nominalize (/31/24) P* @ 87 F 0.000221 P* @ 95 F 0.000272 P*/P* Upcorrect 1.230895 Roof Fitting Loss lb/hr 0.001754 lb/hr 0.002511 lb/hr **Total Standing Loss** Liquid Temp F VP psia 95 0.016

87 0.013

Maximum Short Term Loss 1.379493 lb/hr

SHORT TERM MAX EMISSIONS FOR REFORMATE TRANSFERS CENTURION T-150-1 150 M BBL WORKING CAPACITY IFR DIAMETER = 168 ft Withdrawal Loss lb/hr

$Lw = 0.943 \times Q \times C \times W / D \times (1 + (Nc \times F/D))$

Nc = Support Columns	16
Fc = Effective column D	0.7
D (ft) =	168 ft

1.066667
7500 bbls/hr
0.0015
7.15 lb/gal
168 ft
0.943

Lw = (lb/hr)

0.481604 lb/hr

Standing Loss lb/hr

	Rim Seal Loss Ib/hr	0.025692
	P*/P* Upcorrect	1.247452
	P* @ 95 F	0.015884
	P* @ 87 F	0.012733
	nominalize (/31/24)	0.020595 lb/hr
Tanks 4.09	Rim Seal Loss lb/month	10.38 lb/mo (July)

Tanks 4.09	Roof Fitting Loss lb/month	24.2 lb/mo (July)
	nominalize (/31/24)	0.032527 lb/hr
	P* @ 87 F	0.012733
	P* @ 95 F	0.015884
	P*/P* Upcorrect	1.247452
	Roof Fitting Loss lb/hr	0.040576 lb/hr
	Total Standing Loss	0.066267 lb/hr
	Liquid Temp F	VP psia
		95 0.905
		87 0.73

Maximum Short Term Loss 0.547871 lb/hr

SHORT TERM MAX EMISSIONS FOR NAT GASOLINE TRANSFERS CENTURION T-150-5 150 M BBL WORKING CAPACITY IFR DIAMETER = 168 ft Withdrawal Loss lb/hr

$Lw = 0.943 \times Q \times C \times W / D \times (1 + (Nc \times F/D))$

Nc = Support Columns	16
Fc = Effective column D	0.7
D (ft) =	168 ft

(1 + (Nc x F/D)) =	1.066667	
Q (bbls/hr) =	7500	bbls/hr
C = clingage factor	0.0015	
W (density) =	6.1	lb/gal
D (ft) =	168	ft
0.943 = (constant)	0.943	
Lw = (lb/hr)	0.410879	lb/hr

Standing Loss lb/hr

	Rim Seal Loss Ib/hr	0.24391
	P*/P* Upcorrect	1.249296
	P* @ 95 F	0.25791
	P* @ 87 F	0.206445
	nominalize (/31/24)	0.195238 lb/hr
Tanks 4.09	Rim Seal Loss lb/month	98.4 lb/mo (July)

 Tanks 4.09
 Roof Fitting Loss Ib/month nominalize (/31/24)
 229.4 Ib/mo (July)

 P* @ 87 F
 0.308333 Ib/hr

 P* @ 95 F
 0.206445

 P*/P* Upcorrect
 1.249296

 Roof Fitting Loss Ib/hr
 0.3852 Ib/hr

 Total Standing Loss
 0.62911 Ib/hr

Liquid Temp F	VF	o psia
	95	9.584
	87	8.34

Maximum Short Term Loss 1.039988 lb/hr

20170425 CENTURION BROWNSVILLE PBR NAT GASOLINE TANK T-150-5 SHORT TERM EMISSIONS.xls

Centurion Brownsville Seagoing Barge/Ship Loading Calculation

Ulta Low Sulphur Diesel Fuel No loading controls

Loading Equation Annual Emissions

Seagoing Barge/Ship

LI = 12.46 x ((Q x 42)/1000) x MW x VP x S/(T+460)

12,000,000 bbls/yr 130 lb/lb-mole	loading rate
0.011 psia	76 F
0.2	Sat Factor for Seagoing Barge/Ship loading
76 F	Annual Average product storage temperature
3351 lb/vr	
	12,000,000 bbls/yr 130 lb/lb-mole 0.011 psia 0.2 76 F 3351 lb/yr

1.68 tons/yr

Collection Loss	lb/yr
na	0.00 tons/yr
T.O. DRE 99.9%	lb/yr
na	1.68 tons/yr
Total VOC	1.68 tons/yr

Loading Equation Hourly Emissions Seagoing Barge/Ship Inerted

LI = 12.46 x ((Q x 42)/1000) x MW x VP x S/(T+460)

Q =	15,000 bbls/hr	loading rate	
MW =	130 lb/lb-mc	ble	
VP	0.016 psia	at 95 F Maximum Daily	
S =	0.2	Sat Factor for Seagoing Barge loading	
T =	95 F	Maximum product storage temperature	e

LI =	5.88 lb/hr

Collection Loss at 0%	
na	0.0 lb/hr

T.O. DRE 0%	5.88 lb/hr
Total VOC	5.88 lb/hr

Marine Loading Rates

It should be noted that the Gasoline short term emission rates to meet the PBR are based on worst case/highest temperatures/and vapor pressures as documented for summer months. This limits the loading rates to the awaiting ships/seagoing barges.

As the temperature of the liquid product loaded drops during annual natural air temperature changes, the vapor pressure of the liquid will drop and the emissions based on the limited loading rate will drop. Centurion will document the loading temperatures and as necessary can increase the loading rates to a most efficient rate during these periods of lower temperatures without exceeding the conditions of the PBR.

Centurion Brownsville Seagoing Barge/Ship Loading Calculation

Blended Gasoline high 11.5 RVP Thermal Oxidizer designed for 99.9% DRE

Loading	Equation A	Innual I	Emissic	ons
Seagoin	g Barge/Ship	ļ	Inerted	l Only
LI =	12.46 x ((Q x 42)/	1000) x M'	W x VP x S	5/(T+460)
Q =	10,000,000 bk	ols/yr l	loading rat	te
MW =	65 lb,	/lb-mole		
VP	8.1 ps	sia 7	76 F	Annual Average
S =	0.2	5	Sat Factor	for Seagoing Barge/Ship loading
T =	76 F	/	Annual Av	erage product storage temperature
LI =	1028089 lb	/yr		
	514.04 to	ons/yr		

Collection Efficiency 99.89% per TCEQ

Total VOC	1.08 tons/yr
	0.51 tons/yr
T.O. DRE 99.9%	1,027 lb/yr
	0.57 tons/yr
Collection Loss	1130.90 lb/yr

Blended Gasoline high 11.5 RVP Thermal Oxidizer designed for 99.9% DRE

Loading Equation Hourly Emissions

Seagoing Barge/Ship Inerted

Ll =

12.46 x ((Q x 42)/1000) x MW x VP x S/(T+460)

Q = 13	,000 bbls/hr	loading rate
MW =	65 lb/lb-mole	2
VP	8.9 psia	at 87 F Maximum Daily
S =	0.2	Sat Factor for Seagoing Barge loading
Τ=	87 F	Maximum product storage temperature

LI = 1439 lb/hr

1.6 lb/hr	Collection Efficiency 99	.89% per TCEQ
2.0 10/11		1.6 lb/hr

T.O. DRE 99.9%	1.4 lb/hr
Total VOC	3.0 lb/hr

Nox, CO and PM Emissions Generated During Marine Loading

Thermal Oxidizer

106.261 & 106.262

Hourly Emissions 13000 bph

		Flow to Combustor		%		Heat Generate	d
		LB/hr	BTU/lb	Combustion		BTU/hr	
	VOC	1439	19000	99.9		27,313,659	
SCF	Supp Fuel	0.0	1000	100		0	
Process Flow	v	72994.7	SCFH				
Natural Gas	Flow	0.0	SCFH		Total	27,313,659	BTU/hr

And a second sec							
NOx Factor		0.07	lb/10^ 6 BTU				
CO Factor		0.004	lb/10^ 6 BTU				
PM Factor		0.0076	lb/10^ 6 BTU	<u> </u>			_
HOURLY		lb/hr			PBR Limit		
NOx Generat	ted	1.912		261	6	lb/hr]
CO Generate	ed	0.109		261	6	lb/hr	
PM2.5 Gene	rated	0.208		262	L/K	Emax=0.214	
voc		3.000		262	L/K	Emax=6.0	
	PM2.5			Gasoline			
L for PM 2.5	=	3.000	mg/m3	L for Gasoline	5 =	800.000	mg/m3
Distance to r	eceptor	2000	ft	Distance to re	eceptor	2000	ft
Distance	K value	14		Distance	K value	14	
Emax = L/K		0.214	lb/hr	Emax = L/K		6.000	lb/hr

Annual Emissions 10,000,000 bbls/yr

Flow to Combustor		%	Heat Generated			
		LB/yr	BTU/lb	Combustion	BTU/yr	
	voc	1026958	19000	99.9	2.E+10	
SCF	Supp Fuel	56,149,733	1000	100	6.E+10	
Process Flov	v	56149732.6	SCFY			

Process Flow 56149732.6 Natural Gas Flow 11229946.5

1229946.5		SCFY
	-	

Total 7.56.E+10 BTU/yr

Natural Gas flow = 20% of Process Gas flow

NOx Factor	0.07	lb/10^ 6 BTU
CO Factor	0.004	lb/10^ 6 BTU
PM Factor	0.0076	lb/10^ 6 BTU
ANNUAL	lb/yr	tons/yr
NOx Generated	5294.970	2.647
CO Generated	302.570	0.151
PM2.5 Generated	574.882	0.287

Texas Commission on Environmental Quality Table 4 Combustion Units

Emission Point Number (fr	rom Flow Diagram):						
Model Number (if availabl	e):	<u> </u>					
Name of Device: Marine Th	nermal Oxidizer						
Manufacturer: TBD							
	Characteristic	s of Input					
	Chemical Composition	of Waste Material*					
Material	Minimum Value Expected lb/hr	Average Value Expected lb/hr	Design Maximum lb/hr				
VOC	0		6677				
02	2098		1227				
N2	6905		4038				
Natural Gas	2410		0				
Gross heating value of wa	ste material as Btu/lb <i>(Wet Basi</i>	s if applicable): 20,406.4					
Ai	r Supplied for Waste Material	in SCFM (70°F and 14.7 psia)				
Minimum: 4,724	Ν	faximum: 13,566					
	Waste Material of Contaminat	ted Gas – Total Flow Rate					
Minimum Expected (lb/hr)): 11,413 D	Design Maximum (lb/hr): 11,9	42				
	Waste Material of Contaminate	ed Gas - Inlet Temperature					
Minimum Expected (°F): an	nbient D	Oesign Maximum (°F): 90					
	Chemical Compo	sition of Fuel					
Material	Minimum Value Expected lb/hr	Average Value Expected lb/hr	Design Maximum lb/hr				
Gross heat value of fuel (F	Btu/lb):						
	Air Supplied for Fuel in SC	rm (70°F and 14.7 psia)					
Minimum	1	Maximum:					

Texas Commission on Environmental Quality Table 4 Combustion Units

	Characteristi	cs of Output	a Nor Long.						
Chemical Composition of Flue Gas Released									
Material Minimum Value Expe lb/hr		Average Value Expected lb/hr	Design Maximum lb/hr						
CO2	8116		21775						
H2O	7122		19110						
N2	76656		205672						
02	13804		37036						
Temperature at stack	exit (°F): 1800								
	Total Flow Rate of Flu	e Gas Released (lb/hr)							
Minimum Expected:10	5,698	Maximum Expected:283,59	03						
	Velocity at Stack Exit of 1	Flue Gas Released (ft/sec)							
Minimum Expected: 13	3.8	Maximum Expected: 37.1							
	Combustion Uni	t Characteristics							
Chamber Volume from	n Drawing (ft³): 7985								
Chamber Velocity at A	verage Chamber Temperature (ft	:/sec): 37.1							
Average Chamber Ten	perature (°F): 1800	Average Residence Time (sec): 1.55							
Exhaust Stack Height ((ft): 70	Exhaust Stack Diameter (ft): 13							
	Additional Information for	Catalytic Combustion Unit	S						
Number and Type of (Catalyst Elements: n/a								
Catalyst Bed Velocity	(ft/sec): n/a								
Maximum Flow Rate p	er Catalytic Unit (Manufacturer's	Specifications) Specify Uni	ts:						
<u>n/a</u>									
Attach separate sheets regarding principle of dimensioned and to se	s as necessary providing a descri operation and the basis for calcu cale, to show clearly the design a	ption of the combustion un lating its efficiency. Supply nd conditions. Submit expla	it, including details y an assembly drawing, anations on control for						

temperature, air flow rates, fuel rates, and other operation variables.

								ADOPTED VALUES												
St	Substance [CAS No.]		(p	TWA (ppm/mg/m ³)		STEL/C (ppm/mg/m ³)			Notations				TLV Basis—Critical Effect(s)							
Pa	Paraquat [4685-14-7]				0. 0.	5 mg/m ² 1 mg/m ²	3 3 (R)	_			_		257.18		Pulmonary edema; kidney; liver;			y; liver;		
Pa	arathion [!	56-38-2]				0.	1 mg/m ²	3				Skin; A	4; BEI	291	.27	Choline	aic		<u>a</u> _	
Pa	articulate (polycycli	c aromat	ic hydro	carbons	(PPAH),	see Coa	l tar pito	h volatile	IS				<u> </u>						
Pa	Particulates (Insoluble) Not Otherwise			10	10 mg/m ³ (E, I) 2 mg/m ³ (E, R)							Lung								
Pe	Pentahorane (19624-22-7)				0.005 ppm			0.015 opm					17							
Pe	intachloro	onaphtha	lene [13:	21-64-8]		0.	5 mg/m ³	• •				Skin		300.	40	Chlorace	e liver (CNS		
Pe	intachloro	nitroben	zene (82	-68-8]	<u>_</u>	0.	5 mg/m ³	1	_			A4		295.	36	Liver				<u> </u>
Pe	ntachloro	phenol [87-86-5			0.9	5 mg/m ³	1				Skin; A	3; BEI	266.	35	Irritation	; CVS; CI	NS		
Pe	intaerythri	itol (115	-77-5]			10	mg/m ³					·		136.	15	Irritation	-			
Pe	ntane, all i	isomers	78-78-4;	109-66-	0; 463-8;	2-1] 60	0 ppm	176	b—					72.	15	Irritation	; narcosi	S		
2-1	Pentanon	e, <i>see</i> M	ethyl pro	pyl ketor	18											_				
* F	Pentyl acet 123-92-2	tate (all is 2; 625-16	iomers) [-1; 624-4	628-63-7 1-9; 620	'; 626-38 -11-1]	-0; 50	ppm		100 ppr	n				130.	20	Irritation			<u> </u>	
													<u> </u>							
Ţ	T			9 79	Π	Т	m		Л		11	Π			-			TU	(TT	6
															e e en			nna í ma Tar		

ADOPTED VALUES								
Substance [CAS No.]	TWA (ppm/mg/m ³)	STEL/C (ppm/mg/m ³)	Notations	Mol Wat	TLV Basis—Critical Effect(s)			
Perchioroethylene (Tetrachloroethylene) [127-18-4]	25 ppm	100 ppm	A3; BEI	165.80	Irritation: CNS			
Perchloromethyl mercaptan [594-42-3]	0.1 ppm			185.87	Irritation: pulmopary edema			
Perchloryl fluoride [7616-94-6]	3 ppm	6 ppm		102.46	Irritation: blood			
Perfluoroisobutylene [382-21-8]		C 0.01 ppm		200.04	Irritation; pulmonany edema			
Perlite [93763-70-3]	10 mg/m ³ (E)		A4					
Persulfates Ammonium persulfate [7727-54-0] Potassium persulfate [7727-21-1] Sodium persulfate [7775-27-1]	0.1 mg/m ³ 0.1 mg/m ³ 0.1 mg/m ³			228.18 270.32 238 13	Irritation; dermatitis			
Petroleum distillates, see Gasoline; Stoddard solve	nt; VM&P naphtha			200.10	······································			
Phenacyl chloride, see α -Chloroacetophenone								

Phenol [108-95-2]	5 ppm		Skin; A4; BEI	94.11	Irritation: CNS: blood	
Phenothiazine [92-84-2]	5 mg/m ³		Skin	199.26	Irritation: ocular: liver: kidney	·
N-Phenyl-beta-naphthylamine [13	5-88-6] —		A4	219.29	Irritation	
PM2.5	D=2000'	K=14	Emax	3	4=0,214	UB/Ha

ទួ

 \hat{C}

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _x burner)	0.64	Е
PM (Total) ^e	7.6	D
PM (Condensable) [°]	5.7	D
PM (Filterable) ^c	1.9	В
SO2 ^d	0.6	A
тос	11	В
Methane	2.3	В
voc	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO₂. CO₂[lb/10⁶ scf] = (3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2x10^4$ lb/10⁶ scf.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

PHOENIX ENGINEERING INC.	FUGITIV	E EMISSIO	N CALCULA	ATIONS	DATE:	5/3/2017			
8868 Gulf Freeway, Suite 500 Houston, Texes 77017					JOB NO:	78261			
REFERENCE: CONTROL PLAN: ADDITIONAL FACTORS:	TCEQ FACTO SOCMI W/O	DRS 1/10/1996 C2, 28VHP							
CLIENT:	CENTURION Brownsville T	BROWNSVILI	E TERMINALS						
UNIT:	Gasoline Stora	ige and Diesel Si	orage Terminal						
EMISSION SOURCE	PROCESS STREAM TYPE	VOC SOURCE LBS/HR	CONTROL EFFICIENCY	NOTES	NO. OF EMISSION SOURCES	TOTAL EMISSION LBS/HR			
VALVES	B	0.0089	97%		60	0.01602			
	D	0.0035	97% 0%		432 124	0.04536 0.08680			
PUMPS SEALS	C D	0.0386 0.0161	85% 0%		8 4	0.04632 0.06440			
COMPRESSOR SEALS	В	0.5027	85%		14	1.05567			
RELIEF VALVES	В	0.2293	97%		0	0.00000			
FLANGES	B C D	0.0029 0.0005 0.00007	97% 97% 97%	7 7 7	945 532 323	0.08222 0.00798 0.00068			
OPEN ENDED LINES	A	0.0040	97%			0.00000			
SAMPLE CONNECTION	A	0.0330	97%		0	0.00000			
PROCESS STREAM LEG	END	u			EMISSION TO	TALS			
A All Streams B Gas/Vapor Streams C Light Liquid & Gas/Li D Heavy Liquid Streams	quid Streams				LBS/HR LBS/DAY LBS/YR TONS/YR	1.40544 33.73064 12311.68331 6.15584			
Light Liquid > 0.044 PSL	A VP @ 68°F			T	ONS/1 YEAR	6.15584			
	MOLFR I	COMPONENT	ſ	Lbs/Hr 1.4054433	Lbs/Day 33.7306392	Ton/Yr 6.155841654			
	0			0	0 0	0			
	1			1.4054433	33.7306392	6.155841654			
Fugitive Emission Factor N 1. Factors are taken from 1	Fugitive Emission Factor Notes: 1. Factors are taken from EPA Document, EPA-453/R-93-026, June 1993, Page 2-10, except SOCMI w/o C2 and w/ C2 whic								
<u>Control Efficiency Notes:</u> 7. If an applicant decides to valve credit may be use the weekly physical insp	to monitor their d instead of the pections.	flanges using an 30%. If this op	organic vapor an tion is chosen, in	addition to th) at the same leak e OVA monitorin	definition of valves g the company shall			

MSS EMISSIONS

Ferry Equations, incorporated into AP-42 Chapter 7, have been used to estimate the emissions from degassing the volume of VOC vapors below the roof landed and liquid emptied tank.

For the emissions only one (1) tank, the largest Gasoline tank has been assumed to be taken out of service each year. Gasoline and Gasoline Blendstocks will be degassed to control when taken out of service and if necessary refilled using the control device.

Centurion will contract a portable control device, most probably an Internal Combustion Unit (ICE) with a tested 99.9% DRE, for this operation.

Other than the VOC emissions the portable ICE unit will generate NOx and CO. Testing shows NOx = 0.34 lb/hr/unit and CO = 0.26 lb/hr/unit during operations.

Two units for 48 hours will be estimated per year.

NOx = 0.34 x 2 x 48 = 32.6 lb/yr = 0.016 tons/yr

CO = 0.26 x 2 x 48 = 25.0 lb/yr = 0.013 tons/yr

5/2/17 Centurian Brownsville Terminal IFR TANK S = 0.60

1	TANK ID											
1	TANK CAF	PACITY				250			M BBLS			
1	ROOF RE	FLOAT	DATE	10/7/2017	7 1:00							
1	ROOF LAN	NDING	DATE	10/5/2017	1:00	224						
1	TANK DIA	METER = D				200			FT			
1	LEG HEIG	HT		Assumed		5	FT				GAL	
1	LIQUID HE	EIGHT = hle		Back calculated		0	FT		0.00		GAL	
2	VAPOR HI	EIGHT = hv		Calculated from da	ata			5	FT	BELOV	V ROOF	BBLS
2	TANK VAF	POR SPACE	VOLUME =	Vv				196940	CU FT		35074	
1	PRODUCT	Г			N	lat Gas Co	ond					
1	Mv = MOL	E WT				68			LB/LB-MOL	.E		
1	TEMP F					95			F			
1	A					6.719						
1	В					1248.99						
1	С					273.15						
2	P = PROD	UCT VP						8.960	PSIA		AP-42	
1	WI = LIQ D	DENSITY				5.85			LB/GAL		AP-42	
0	Pa = ATM	OS PRESSL	JRE					14.700	PSIA			
0	R CONST	ANT						10.73	PSIA CU F	T/LB-MC	DLE R	
0	DELTA Tv							21.7	F			
2	DAYS = no	t k				2.00						
2	Ke = VAPO	OR SPACE E	EXP FACTO	R			0.324	4252995				
2	Ks = STAN	NDING IDLE	SAT FACTO)R			0.296	5345451	< = 0.6	0.2	2963454	51
0	S = FILLIN	IG SATURA	TION FACTO	OR				0.6				
							I	B	TONS			
	Ls =	STANDING	GIDLE LOSS	5			3	872.370	1.936			
	Lf =	DEGASSIN	IG LOSS				12	089.708	6.045			
	TOTAL						15	962.078	7.981			
	TOTAL	PORTABL	E ICE UNIT,	VC = 99.+% DRE				15.962	0.080			
	Lc =	CLINGAGE	E LOSS	0.042 X C X W X	A			11.572	0.005786			
	C = 0.0015	5, A = AREA	OF TANK F	LOOR (SQ FT) W :	= LIQ D	EN						
	Ke =(delta	Tv/Tla) +((de	eltaPv-deltaF	b)/(Pa-Pva))			SLOW	/ FILL	FULL FILL			
							BBLS/	HR	BBLS/HR			
	delta Tv	=	(79.1-57.4) =		21.7 F	र						
	Tla	=	=(T+460)		555 F	र						
	delta Pv	=	Pvx-Pvn		1.637 p	osia	EMISS	SION	EMISSION			
	Pvx	=	9.808		p	osia	RATE		RATE			
	Pvn	=	8.171		p	osia	LB/HR		LB/HR			
	delta Pb	=			0		#D	IV/0!	#DIV/0!			
	Pa	=		14	1.700 p	osia						
	Pva	=		8	8.960 p	osia						
	Ke	=		0.32425	52995							

()
STORM WATER COLLECTION EMISSIONS

Centurion may install if necessary, a small 10-12 M bbl IFR tank to accumulate the storm water, if contaminated, from areas around pump manifolds designed for spill prevention. Uncontaminated storm water will flow off site without unnecessary handling. Another option is a small oil water separator.

The VOC product accumulated below the IFR will be equivalent to gasoline.

The emissions and facilities will be authorized under 106.532.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification:	
City:	CENTORION BROWNSVILLE WITK-1
State:	
Company:	
Type of Tank:	Internal Floating Roof Tank
Description:	Water/Oil Storage Tank
Tank Dimensions	4
Diameter (ft):	36 50
Volume (gallons):	336,000,00
Turnovers:	1.00
Self Supp. Roof? (y/n):	Y
No. of Columns:	0.00
	0.00
Paint Characteristics	
Internal Shell Condition:	l ight Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Rim-Seal System	
Primary Seal:	Mechanical Shoe
Secondary Seal	Rim-mounted
Deck Characteristics	
Deck Fitting Category:	Detail
Deck Type:	Bolted
Construction:	Sheet
Deck Seam:	Sheet: 7 Ft Wide
Deck Seam Len. (ft):	146.49

Deck Fitting/Status

Access Hatch (24-in. Diam.)/Bolted Cover. Gasketed	Quantity
Automatic Gauge Float Well/Bolted Cover, Gasketed	1
Roof Leg or Hanger Well/Fixed	1
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	11
Stub Drain (1-in. Diameter)/Slit Fabric Seal 10% Open	1
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation. Gask	11
	1

Meterological Data used in Emissions Calculations: Brownsville, Texas (Avg Atmospheric Pressure = 14.72 psia)

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

CENTURION BROWNSVILLE WTTK-1 - Internal Floating Roof Tank

Mixture/Component	Month	Da Tem Avg.	iily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight	Liquid Mass Fract	Vapor Mass Fract	Mol.	Basis for Vapor Pressure
Gasoline (RVP 11)	lan	68 71	64 20	73 24	72.94	0 7007				TTGGC.	11404	a Aeiñtir	
Gasoline (RVP 11)	Feb	70.24	GE 44	75.21	73.04	0.7937	N/A	N/A	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3
Gasoline (RVP 11)	Mar	72.56	69.95	70.20	73.84	7.0017	N/A	N/A	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3
Gasoline (RVP 11)	Ann	70.30	74.57	78.76	73.84	7.4254	N/A	N/A	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3
Gazolino (RVP 11)	Apr Mari	70.73	/1.5/	81.89	73.84	7.8631	N/A	N/A	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3
	May	78.98	73,94	84.01	73.84	8.1858	N/A	N/A	65.0000			92.00	Ontion 4: RVP=11 ASTM Slope=2
Gascline (RVP 11)	Jun	80.56	75.26	85.87	73.84	8.4200	N/A	N/A	65.0000			92.00	Option 4: BVB-11, ASTA Stope-3
Gasoline (RVP 11)	Jul	81.31	75.68	86.94	73.84	8.5318	N/A	N/A	65,0000			02.00	Option 4. RVP=11, ASTM Stope=3
Gasoline (RVP 11)	Aug	81.09	75.54	86.64	73.84	8 4991	N/A	N/A	65,0000			92.00	Option 4: RVP=11, ASTM Slope=3
Gasoline (RVP 11)	Sep	79.55	74.50	84 61	73 84	8 2704	N/A	NVA	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3
Gasoline (RVP 11)	Oct	76 57	71 42	81 72	73.94	7 9400	NUA	NUA	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3
Gasoline (RVP 11)	Nov	73.02	69.25	77.90	73.04	7.0409	N/A	N/A	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3
Gasoline (RVP 11)	Dee	60.02	65.25 65.24	77.00	73.84	1.3537	N/A	N/A	65.0000			92.00	Option 4: RVP=11, ASTM Stope=3
	060	09.62	00.31	74.33	73.84	6.9349	N/A	N/A	65.0000			92.00	Option 4: RVP=11, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

CENTURION BROWNSVILLE WTTK-1 - Internal Floating Roof Tank

Month:	January	February	March	April	May	kuno	haba	A	O and a sub-			<u> </u>
Rim Seal Losses (lb):	18,2168	18 9863	20 6147	22 2001	22 7000	04 0005	July	August	September	October	November	December
Seal Factor A (lb-mole/ft-yr):	0.6000	0 6000	0,6000	0 6000	23.7000	24.8035	25.3112	25.1617	24.1367	22.2977	20.3333	18.7371
Seal Factor B (ib-mole/ft-yr (mph)^n):	0.4000	0 4000	0.4000	0.0000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Value of Vapor Pressure Function:	0.1536	0.1601	0 1738	0 1897	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Vapor Pressure at Daily Average Liquid			0	0.1007	0.2003	0.2091	0.2134	0.2121	0.2035	0.1880	0.1714	0.1580
Surface Temperature (psia):	6.7937	7.0017	7 4254	7 8631	8 1959	9 4200	0.5340	0.4004				
Tank Diameter (ft):	36.5000	36,5000	36 5000	36 5000	36,5000	26 5000	0.0010	0.4991	8.2704	7.8409	7.3537	6.9349
Vapor Molecular Weight (Ib/Ib-mole):	65,0000	65 0000	65,0000	65,0000	65,0000	30.3000	36.5000	35.5000	36.5000	36.5000	36.5000	36.5000
Product Factor:	1 0000	1 0000	1 0000	1 0000	4.0000	00.000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Withdrawal Losses (lb):	0 1447	0 1447	0 1447	0 1447	0 4 4 4 7	0.4.477						
Number of Columns:	0,0000	0,0000	0.0000	0.1447	0.1447	0.144/	0.144/	0.1447	0.1447	0.1447	0.1447	0.1447
Effective Column Diameter (ft):	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Net Throughput (gal/mo.);	28 000 0000	28 000 0000	28 000 0000	29 000 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Shell Clingage Factor (bbl/1000 soft);	0 0015	0.0015	20,000.0000	20,000.0000	28,000.0000	28,000.0000	28,000.0000	28,000.0000	28,000.0000	28,000.0000	28,000.0000	28,000.0000
Average Organic Liquid Density (lb/gal);	5 6000	5 6000	5 6000	5,6000	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Tank Diameter (ft):	36 5000	36 5000	36 5000	36,5000	3.0000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000
		00.0000	00.0000	30.3000	30.5000	30,5000	36.5000	36.5000	36.5000	36.5000	36.5000	36.5000
Deck Fitting Losses (Ib):	29,7790	31 0369	33 6080	36 6012	39 9503	40 5464	44 0700					
Value of Vapor Pressure Function:	0 1536	0 1601	0 1738	0 1997	0.0003	40.0464	41.3/63	41.1319	39.4564	36.4501	33.2389	30.6296
Vapor Molecular Weight (Ib/Ib-mole):	65 0000	65 0000	65 0000	65,0000	0.2003	0.2091	0.2134	0.2121	0.2035	0.1880	0.1714	0.1580
Product Factor:	1 0000	1 0000	1 0000	4 0000	05.0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000
Tot. Roof Fitting Loss Fact. (Ib-mole/vr):	35 8000	35,8000	35 8000	25 8000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0	00.0000	00.0000	33.0000	33.8000	35.8000	35.8000	35.8000	35.8000	35.8000	35.8000	35.8000	35.8000
Deck Seam Losses (ib):	21,7207	22 6382	24 5708	26 6069	79 2279	00 5744						
Deck Seam Length (ft):	146,4900	146 4900	146 4900	146 4900	20.3373	29.3/44	30.1797	30.0014	28.7793	26.5865	24.2443	22.3411
Deck Seam Loss per Unit Length				140.4000	140.4000	140.4900	140.4900	146.4900	146.4900	146.4900	146.4900	146.4900
Factor (lb-mole/ft-yr):	0.1400	0 1400	0 1400	0.1400	0 1 400	0 4 400	0.4.000					
Deck Seam Length Factor(ft/soft);	0 1400	0 1400	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400
Tank Diameter (ft);	36,5000	36 5000	26 5000	28 5000	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400	0.1400
Vapor Molecular Weight (lb/lb-mole)	65 0000	65,0000	30.5000	35.5000	35.5000	36.5000	36.5000	36.5000	36.5000	36.5000	36.5000	36.5000
Product Factor	1 0000	1 0000	4 0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000	65.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total Losses (ib):	69.8611	72.8061	79 0381	85 8329	91 0083	05 0680	07 0449	00 4007				
							57.0115	30.4397	92.51/1	85.4790	77.9611	71.8526
Roof Fitting/Status				Quentit		n a/lb-molo6r)	KEN/h mala/	actors				
Access Hatch (24-in, Diam,)/Bolted Cover, Gasketed				General	7 NF	aqio-11010/9/)	NFU(ID-ITIOIO/()/	<u>nprrm))</u>		m	Losses(lb)	
Automatic Gauge Float Weil/Bolted Cover, Gasketed						1.60		0.00	0.	00	19.3568	
Roof Leg or Hanger Well/Fixed						2.80		0.00	0.	00	33.8744	
Sample Pipe or Well (24-in, Diam)/Slit Fabric Seal 10% One	n			1	1	0.00		0.00	0.	00	0.0000	
Stub Drain (1-in. Diameter)/					1	12.00		0.00	0.	00	145.1761	
Vacuum Breaker (10-in Diam)/Weighted Mech Actuation G	ack			1	1	1.20		0.00	0.	00	159.6937	
	adr.				1	6.20		1.20	0.	94	75.0076	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

CENTURION BROWNSVILLE WTTK-1 - Internal Floating Roof Tank

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Gasoline (RVP 11)	264.76	1.74	432.80	315.68	1,014.97

EMERGENCY STANDBY GENERATOR

The facility will install an emergency electric generator driven by a Natural Gas fired engine. The system meets the definition of "emergency" and will be tested approximately 15 minutes every week for weekly maintenance. It is estimated to run only 16 hours/yr., maximum.

A recently purchased unit with a rated HP of 47 for similar service, had the following Manufacturer specifications that meet the latest EPA standards for RICE units.

- CO = 131.6 Grams/HP-hr. calculated emissions 0.11 tons/yr.
- NOx = 1.59 Grams/HP-hr. calculated emissions 0.001 tons/yr.
- VOC = 0.1 Grams/HP-hr. calculated emissions 0.0001 tons/yr.

Storage and Use of Butane

Butane will be received at the Centurion Brownsville facility by truck or pipeline, and stored in the six (6) horizontal high pressure storage tanks.

The butane is used in the blending of the finished Gasoline.

APD MARINE LOADING COLLECTION EFFICIENCY GUIDANCE (FINAL September 21, 2016)

Introduction

The TCEQ's previous guidance regarding marine loading collection efficiencies for ocean-going marine vessels has been 95 percent. With ILTA's noted commitments resulting in as many as 50 ship testing results, the TCEQ has evaluated the information confirming that collection efficiencies for inerted, ocean-going vessels were well beyond 95%, and in consideration of federal and state regulations applicable to ship loading, the TCEQ Air Permits Division (APD) agrees that a shift in our policy regarding collection efficiency is warranted. The control efficiencies listed below are supported by the test data and information submitted by ILTA.

Category 1: 99.0% - No additional testing required Category 2: >99.0 to 99.49% – 1 initial demonstration of compliance test within 12 months Category 3: 99.5 to 99.89% – 1 test per year for 3 years Category 4: 99.9% – 3 tests per year for 5 years

Further, applicants that have accepted more stringent testing frequencies may revise their permits with the adjusted requirements. This change to testing requirements can be accomplished by permit alteration. However, if the permit holder proposes to increase loading throughput, a permit amendment will be necessary to account for potential actual increases as well as any possible increases from other facilities (such as storage tanks). Credit will be given for tests that have already been completed provided that the tests are deemed acceptable by the TCEQ and that they have been conducted over an appropriate time frame. If granted, credit for prior tests will be noted in the altered or amended permit.

Use of the higher collection efficiencies by a regulated entity is contingent upon acceptance of revised permit conditions appropriate to the chosen category of collection efficiency. Note that the collection efficiencies represented by the applicant are enforceable representations, and the required tests will serve to demonstrate compliance. Any subsequent test that results in a measured collection efficiency lower than the represented value will be considered as a violation of the permit, and will be subject to possible enforcement action. For Title V sources, non-compliant tests must be reported as permit deviations.

The use of 99% capture efficiency is acceptable for sources authorized under Permit by Rule (PBR) provided the regulated entity certifies to following the additional monitoring, inspection, and recordkeeping requirements indicated in the attached Special Condition No. 1. The use of collection efficiencies higher than 99% will require testing to demonstrate compliance and will not be authorized via PBR. Through this process, it has been well demonstrated that facilities adhering to the additional monitoring, inspection, and recordkeeping requirements in the attached Special Condition No. 1 have regularly achieved 99 percent capture efficiency. If an applicant commits to and follows these requirements, the facility should achieve 99 percent capture efficiency. Documentation of the compliance with the requirements in Special Condition No. 1 will serve as a demonstration of compliance rather than testing. As testing would not be required it would be acceptable to authorize a facility with 99% capture efficiency and representations of compliance required in the Special Condition No. 1 with the applicable PBR.

Special Conditions for Category 1 (99.0%)

- 1. The following additional requirements apply to loading of a VOC which has a vapor pressure equal to or greater than 0.5 pounds per square inch absolute (psia) under actual storage conditions onto inerted marine vessels (ships).
 - A. Before loading, the owner or operator of the marine terminal shall verify that the marine vessel has passed an annual vapor tightness test as specified in 40 CFR §63.565(c) (September 19, 1995) or 40 CFR §61.304(f) (October 17, 2000) within the previous twelve months.
 - B. The pressure at the vapor collection connection of an inerted marine vessel must be maintained such that the pressure in a vessels' cargo tanks do not go below 0.2 pounds per square inch gauge (psig) or exceed 80% of the lowest setting of any of the vessel's pressure relief valves. The lowest vessel cargo tank or vent header pressure relief valve setting for the vessel being loaded shall be recorded. Pressure shall be continuously monitored while the vessel is being loaded. Pressure shall be recorded at fifteen minute intervals.
 - C. VOC loading rates shall be recorded during loading. The loading rate must not exceed the maximum permitted loading rate.
 - D. During loading, the owner or operator of the marine terminal or of the marine vessel shall conduct audio, olfactory, and visual checks for leaks once every 8 hours for on-shore equipment and on board the ship.
 - (1) If a liquid leak is detected during loading and cannot be repaired immediately (for example, by tightening a bolt or packing gland), then the loading operation shall cease until the leak is repaired.
 - (2) If a vapor leak is detected by sight, sound, smell, or hydrocarbon gas analyzer during the loading operation, then a "first attempt" shall be made to repair the leak. Loading operations need not be ceased if the first attempt to repair the leak is not successful provided that the first attempt effort is documented by the owner or operator of the marine vessel and a copy of the repair log is made available to a representative of the marine terminal.
 - (3) If the attempt to repair the leak is not successful and loading continues, emissions from the loading operation for that ship shall be calculated assuming a collection efficiency of 95%.
 - (4) Date and time of each inspection shall be noted in the operator's log or equivalent. Records shall be maintained at the plant site of all repairs and replacements made due to leaks. These records shall be made available to representatives of the Texas Commission on Environmental Quality (TCEQ) upon request.

Special Conditions for Category 2: (>99.0 - 99.49%) (in addition to Condition 1)

- 2. VOC collection efficiency tests of inerted ocean-going marine vessels shall be conducted as follows to demonstrate a collection efficiency of 99.49% as represented in the permit application.
 - A. Testing shall be conducted using the protocol agreed to by the Executive Director on XX/XX/XXXX. Any revision to the approved testing protocol shall require approval from the Executive Director prior to implementation. The permittee shall maintain a copy of the approved protocol on site.
 - B. Complying test results shall be obtained in accordance with the protocol for a minimum of one vessel. The test shall be conducted within twelve months of the first loading of an inerted ocean-going marine vessel.
 - C. The results of the test shall be submitted to the TCEQ Regional Office with a copy to the TCEQ Air Permits Division within 60 days after completion of the test.
 - D. The TCEQ Regional Office must be notified at least 48 hours prior to testing. The facility owner or operator may request a waiver from the 48 hour advance notification requirement from the TCEQ Regional Office.
 - E. The permit holder shall maintain the following records for each ship tested for a period of 5 years from the date of testing:
 - (1) The most recent vapor tightness certificate;
 - (2) A recent, completed Standard Tanker Chartering Questionnaire form (Q88); and
 - (3) Records of each incidence of testing conducted in accordance with this condition.

Special Conditions for Category 3: (99.5 - 99.89%) (in addition to Condition 1)

- 2. VOC collection efficiency tests of inerted ocean-going marine vessels shall be conducted as follows to demonstrate a collection efficiency of (99.5 99.89%) as represented in the permit application.
 - A. Testing shall be conducted using the protocol agreed to by the Executive Director on XX/XX/XXXX. Any revision to the approved testing protocol shall require approval from the Executive Director prior to implementation. The permittee shall maintain a copy of the approved protocol on site.
 - B. Complying test results shall be obtained in accordance with the protocol for a minimum of one vessel per year for 3 years. The first test shall be conducted within twelve months of the first loading of an inerted ocean-going marine vessel.
 - C. The results of the test shall be submitted to the TCEQ Regional Office with a copy to the TCEQ Air Permits Division within 60 days after completion of the test.
 - D. The TCEQ Regional Office must be notified at least 48 hours prior to testing. The facility owner or operator may request a waiver from the 48 hour advance notification requirement from the TCEQ Regional Office.
 - E. The permit holder shall maintain the following records for each ship tested for a period of 5 years from the date of testing:

Page | 3

- (1) The most recent vapor tightness certificate;
- (2) A recent, completed Standard Tanker Chartering Questionnaire form (Q88); and
- (3) Records of each incidence of testing conducted in accordance with this condition.
- 3. The following requirements apply if a test conducted per Condition 2 shows collection efficiency lower than assumed in permit emission calculations.
 - A. Emissions from the tested ship shall be calculated at the measured collection efficiency instead of the efficiency assumed for permit calculations.
 - B. Emissions from future instances of ship loading shall continue to be calculated at the lower measured collection efficiency until a test result confirming the permitted collection efficiency is obtained.
 - C. As an alternative to assuming the lower measured collection efficiency for subsequent loading as specified in paragraph B, the regulated entity can assume the permitted collection efficiency in subsequent loading operations provided that the loading activity is monitored with an optical gas imaging instrument as defined in 30 TAC 115.358 and no leaks are observed. If a leak is observed, the lower measured collection efficiency must be used. The observations must occur during a minimum 6 hour period as close to the end of loading as possible.

Special Conditions for Category 4: (99.9 %)

(in addition to Condition 1)

- 2. VOC collection efficiency tests of inerted ocean-going marine vessels shall be conducted as follows to demonstrate a collection efficiency of 99.9% as represented in the permit application.
 - A. Testing shall be conducted using the protocol agreed to by the Executive Director on XX/XX/XXXX. Any revision to the approved testing protocol shall require approval from the Executive Director prior to implementation. The permittee shall maintain a copy of the approved protocol on site.
 - B. Complying test results shall be obtained in accordance with the protocol for a minimum of three vessels per year for five years. The first test shall be conducted within twelve months of the first loading of an inerted ocean-going marine vessel.
 - C. The results of the test shall be submitted to the TCEQ Regional Office with a copy to the TCEQ Air Permits Division within 60 days after completion of the test.
 - D. The TCEQ Regional Office must be notified at least 48 hours prior to testing. The facility owner or operator may request a waiver from the 48 hour advance notification requirement from the TCEQ Regional Office.
 - E. The permit holder shall maintain the following records for each ship tested for a period of 5 years from the date of testing:
 - (1) The most recent vapor tightness certificate;
 - (2) A recent, completed Standard Tanker Chartering Questionnaire form (Q88); and
 - (3) Records of each incidence of testing conducted in accordance with this condition.

- 3. The following requirements apply if a test conducted per Condition 2 shows collection efficiency lower than assumed in permit emission calculations.
 - A. Emissions from the tested ship shall be calculated at the measured collection efficiency instead of the efficiency assumed for permit calculations.
 - B. Emissions from future instances of ship loading shall continue to be calculated at the lower measured collection efficiency until a test result confirming the permitted collection efficiency is obtained.

As an alternative to assuming the lower measured collection efficiency for subsequent loading as specified in paragraph B, the regulated entity can assume the permitted collection efficiency in subsequent loading operations provided that the loading activity is monitored with an optical gas imaging instrument as defined in 30 TAC 115.358 and no leaks are observed. If a leak is observed, the lower measured collection efficiency must be used. The observations must occur during a minimum 6 hour period as close to the end of loading as possible.

Permits by Rule 30 TAC Chapter 106, Section 106.4 "Quick-Check" Applicability Checklist Instructions and Guidance for Using the "Quick-Check" Checklist

~~~

| CO 0.16 NO <sub>x</sub> 2.67 VOC 23.54                                                                                                                                                                                                                                                                           |            |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                  |            |  |  |  |  |  |  |
| PM 0.29 SO <sub>2</sub> Other                                                                                                                                                                                                                                                                                    |            |  |  |  |  |  |  |
| The following questions require a "Yes," or "No," answer to be indicated for this permit by rule claim:                                                                                                                                                                                                          |            |  |  |  |  |  |  |
| A. Title 30 TAC § 106.4(a)(5): Current Permit by Rule Requirements                                                                                                                                                                                                                                               |            |  |  |  |  |  |  |
| Have you checked to determine if this exempt project is being claimed under the current version of 30 TAC 106? XYES                                                                                                                                                                                              | ⊡no        |  |  |  |  |  |  |
| If "Yes," continue to next question                                                                                                                                                                                                                                                                              |            |  |  |  |  |  |  |
| If "No," please contact the Air Permits Division for a copy of the current permit by rule to be claimed.                                                                                                                                                                                                         |            |  |  |  |  |  |  |
| B. Title 30 TAC § 106.4(a)(7): Permit by rule prohibition check                                                                                                                                                                                                                                                  |            |  |  |  |  |  |  |
| Are there any <u>air permits</u> under the same account containing permit conditions which prohibit or restrict the use of <b>YES</b> permits by rule?                                                                                                                                                           | X NO       |  |  |  |  |  |  |
| If "No," continue to next question                                                                                                                                                                                                                                                                               |            |  |  |  |  |  |  |
| If "Yes," permits by rule may not be used or their use must meet the restrictions of the permit.                                                                                                                                                                                                                 |            |  |  |  |  |  |  |
| A new permit or permit amendment may be required.                                                                                                                                                                                                                                                                |            |  |  |  |  |  |  |
| List permits number(s):                                                                                                                                                                                                                                                                                          |            |  |  |  |  |  |  |
| C. Title 30 TAC § 106.4(b): Circumvention check                                                                                                                                                                                                                                                                  |            |  |  |  |  |  |  |
| Title 30 TAC § 106.4(b) states "No person shall circumvent by artificial limitations the requirements of § 116.110 of this title (covering permitting)." Circumvention by artificial limitations may include but is not limited to:                                                                              |            |  |  |  |  |  |  |
| (1.) A. dividing a complete project into separate segments to circumvent $\$106.4(a)(1)$ limits;                                                                                                                                                                                                                 |            |  |  |  |  |  |  |
| (2.) claiming feed or production rates below the physical capacity of the project's equipment in order to begin<br>constructing facilities before a permit or permit amendment is approved for full scale operations, particu-<br>when the unit will not be economically viable at less than permitted capacity; | n<br>larly |  |  |  |  |  |  |
| (3.) claiming a limited chemical list in order to begin constructing facilities before a permit or permit amend<br>approved for additional chemicals, particularly when the unit will not be economically viable until the<br>additional chemicals are authorized.                                               | nent is    |  |  |  |  |  |  |
| Does your project meet any of the criteria listed above?                                                                                                                                                                                                                                                         | X NO       |  |  |  |  |  |  |
| If "No," continue to next rule question.                                                                                                                                                                                                                                                                         |            |  |  |  |  |  |  |
| If "Yes," a permit by rule may not be claimed.                                                                                                                                                                                                                                                                   |            |  |  |  |  |  |  |
| D. Title 30 TAC § 106.4(c) and (d): Compliance with all Rules                                                                                                                                                                                                                                                    |            |  |  |  |  |  |  |
| Will the facility comply with all rules and regulations of the, the intent of the Texas Clean Air Act, and any local XYES NO permitting or registration requirements?                                                                                                                                            |            |  |  |  |  |  |  |
| If "Yes," continue to next rule question                                                                                                                                                                                                                                                                         |            |  |  |  |  |  |  |
| If "No," a permit by rule may not be claimed                                                                                                                                                                                                                                                                     |            |  |  |  |  |  |  |



### Permits by Rule 30 TAC Chapter 106, Section 106.4 "Quick-Check" Applicability Checklist Instructions and Guidance for Using the "Quick-Check" Checklist

| E. Title 30 TAC § 106.4(a)(1): Emission limits check                                                                                       | ck                         |                               |      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|------|--|--|--|
| The maximum emissions from all facilities at the site, including this permit by rule claim, are less than 25 tpy of XES NO any contaminant |                            |                               |      |  |  |  |
| If the answer to these questions is "Yes," no furthe                                                                                       | er review is needed to com | plete this checklist.         |      |  |  |  |
| Forward all information needed to verify your perm                                                                                         | mit by rule claim.         |                               |      |  |  |  |
| If "No," this checklist cannot be used. Please com                                                                                         | plete the standard 30 TA   | C§106.4 Applicability Checkli | ist. |  |  |  |
| Name: Peter Schmar                                                                                                                         |                            |                               |      |  |  |  |
| Company: CMG Brownsville II, LLC                                                                                                           |                            |                               |      |  |  |  |
| Title: VP of Operations                                                                                                                    |                            |                               |      |  |  |  |
| Facility Name: Centurion Brownsville Terminal                                                                                              |                            |                               |      |  |  |  |
| Phone No.: 918-801-8911                                                                                                                    | Fax No.:                   |                               |      |  |  |  |
| Email Address: peterschmar@gmail.com Account ID No.:                                                                                       |                            |                               |      |  |  |  |
| Location: Brownsville, Texas                                                                                                               |                            |                               |      |  |  |  |
| Signature of Company Officer:                                                                                                              |                            | Date: 57 3,                   | 17   |  |  |  |

Save Form

**Reset Form** 

#### Texas Commission on Enviromental Quality Title 30 Texas Administrative Code § 106.261 Permit By Rule (PBR) Checklist Facilities (Emission Limitations)

The following checklist is designed to help you confirm that you meet Title 30 Texas Administrative Code § 106.261 (30 TAC § 106.261) requirements. If you do not meet all the requirements, you may alter the project design or operation in such a way that all the requirements of the PBR are met or you may obtain a construction permit. The PBR forms, tables, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ) Air Permits Division website at, www.tceq.texas.gov/permitting/air/air\_permits.html

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

| Che | ck The Most Appropriate Answer                                                                                                                                                                                                                            | est #Early and  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | Is a description or checklist of how this claim meets the general requirements for the use of PBRs in 30 TAC § 106.4 attached?                                                                                                                            | 🛛 YES 🗌 NO 🗌 NA |
| b1  | Is this claim for construction of a facility authorized in another section of this chapter or for which a standard permit is in effect?                                                                                                                   | 🗌 YES 🕅 NO 🗌 NA |
|     | If "YES," this PBR cannot be used to authorize emissions from the project.                                                                                                                                                                                |                 |
| b2  | Is this claim for any change to any facility authorized under another section of this chapter or authorized under a standard permit?                                                                                                                      | 🗌 YES 🖾 NO 🗌 NA |
|     | If "YES," this PBR cannot be used to authorize emissions from the project.                                                                                                                                                                                |                 |
| al  | Are facilities or changes located at least 100 feet from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the facilities or the owner of the property upon which the facilities are located? | 🕅 YES 🗌 NO 🗌 NA |

Save Form

**Reset Form** 

#### Texas Commission on Environmental Quality Title 30 Texas Administrative Code § 106.261 Permit By Rule (PBR) Checklist Facilities (Emission Limitations)

| Check The Most Appropriate Answer (continued)                                                                                                                                                |                               |                       |                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------|--|--|--|--|
| a2 Are total new or increased emissions, including fugitives, less than or equal to<br>6.0 pounds per hour (lb/hr) and ten tons per year of the following materials <sup>1</sup> YES INO INA |                               |                       |                   |  |  |  |  |
| Check All That Apply                                                                                                                                                                         |                               |                       |                   |  |  |  |  |
| 🔲 acetylene                                                                                                                                                                                  | cyclopentane                  | 🗌 kaolin              | 🗌 propane         |  |  |  |  |
| 🗌 alumina                                                                                                                                                                                    | emery dust                    | □ limestone           | 🗌 propyl alcohol  |  |  |  |  |
| 🗌 argon                                                                                                                                                                                      | 🗌 ethanol                     | 🗌 magnesite           | 🗌 propyl ether    |  |  |  |  |
| 🗌 butane                                                                                                                                                                                     | 🗌 ethyl acetate               | 🗌 marble              | 🗌 propylene       |  |  |  |  |
| 🔲 calcium carbonate                                                                                                                                                                          | 🗌 ethyl ether                 | methyl acetylene      | 🗌 silicon         |  |  |  |  |
| 🔲 calcium silicate                                                                                                                                                                           | 🗌 ethylene                    | 🗌 methyl chloroform   | 🗌 silicon carbide |  |  |  |  |
| 🔀 carbon monoxide                                                                                                                                                                            | 🗌 glycerin mist               | 🗌 methyl cyclohexane  | 🗌 starch          |  |  |  |  |
| 🗌 cellulose fiber                                                                                                                                                                            | 🗌 gypsum                      | 🗌 neon                | □ sucrose         |  |  |  |  |
| 🗌 cement dust                                                                                                                                                                                | 🗌 helium                      | 🗌 nonan               | 🗌 sulfur dioxide  |  |  |  |  |
| 🗌 crude oil                                                                                                                                                                                  | 📋 iron oxide dust             | 🗙 oxides of nitrogen  | 🗌 zinc oxide      |  |  |  |  |
| 🗌 cyclohexane                                                                                                                                                                                | 🗌 isohexane                   | pentaerythritol       | zinc stearate     |  |  |  |  |
| 🔲 cyclohexene                                                                                                                                                                                | 🔲 isopropyl alcohol           | plaster of paris      |                   |  |  |  |  |
| ☑ refinery petroleum fractions (except for pyrolysis naphthas and pyrolysis gasoline) containing less than ten volume percent benzene                                                        |                               |                       |                   |  |  |  |  |
| ☐ fluorocarbons Numbers                                                                                                                                                                      | 11, 12, 13, 14, 21, 22, 23, 1 | 13, 114, 115, and 116 |                   |  |  |  |  |

<sup>&</sup>lt;sup>1</sup>Any upstream and/or downstream actual emission increases that result from a project for which this PBR is claimed need to be authorized appropriately. Any associated upstream and/or downstream emissions authorized as part of the PBR claim will need to be included as part of the total new or increased emissions, unless: 1) these emissions stay below current authorized emission limits; 2) there is not a change to any underlying air authorizations for the applicable units associated with BACT, health and environmental impacts, or other representations (i.e. construction plans, operating procedures, throughputs, maximum emission rates, etc.); and 3) this claim is certified via PI-7 CERT or APD-CERT. Notwithstanding the exclusion of any upstream and/or downstream emissions under this PBR claim, the total of all emission increases, including upstream and/or downstream actual emission increases, are required to be part of the PBR registration to determine major new source review applicability under Title 30 TAC Chapter 116. The emission increases review requirements under 30 TAC Chapter 116.

#### Texas Commission on Enviromental Quality Title 30 Texas Administrative Code § 106.261 Permit By Rule (PBR) Checklist Facilities (Emission Limitations)

| Che        | ck Th                                                                                                                                                                                                                                                                     | e Most Appropriate Answer                                                                                                                                                                           |                                                                             |                                 |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| a3         | Are<br>1.0 l<br>cubi<br>of th                                                                                                                                                                                                                                             | total new or increased emissions, including f<br>b/hr of any chemical having a limit value (L)<br>c meter (mg/m³) as listed and referenced in T<br>is title (relating to Facilities (Emission and D | 🗌 YES 🗌 NO 🖾 NA                                                             |                                 |  |  |  |  |
| List       | chemi                                                                                                                                                                                                                                                                     | cal(s):                                                                                                                                                                                             | L value(s):                                                                 |                                 |  |  |  |  |
|            | Are<br>1.0 l                                                                                                                                                                                                                                                              | total new or increased emissions, including f<br>b/hr of any chemical not listed or referenced                                                                                                      | fugitives, less than or equal to<br>1 in Table 262? <sup>1</sup>            | 🗌 YES 🗌 NO 🖾 NA                 |  |  |  |  |
|            | List                                                                                                                                                                                                                                                                      | chemical(s):                                                                                                                                                                                        |                                                                             |                                 |  |  |  |  |
|            | Are<br>limit                                                                                                                                                                                                                                                              | total new or increased emissions, including f<br>value of less than 200 mg/m³? <sup>1</sup>                                                                                                         | fugitives, of a chemical with a                                             | 🗌 yes 🗌 no 🔀 na                 |  |  |  |  |
|            | If "Y<br>§ 10                                                                                                                                                                                                                                                             | ES" the authorization of the chemical is not a 6.262 to authorize the emissions, if applicabl                                                                                                       | llowed under this section. We sug                                           | gest you use 30 TAC             |  |  |  |  |
| a4         | Are<br>equi                                                                                                                                                                                                                                                               | there any changes to or additions of any exis<br>pment?                                                                                                                                             | sting air pollution abatement                                               | 🗌 YES 🗵 NO 🗌 NA                 |  |  |  |  |
| <b>a</b> 5 | Will<br>atmo<br>opac                                                                                                                                                                                                                                                      | there be any visible emissions, except uncon<br>osphere from any point or fugitive source in<br>tity in any six-minute period?                                                                      | nbined water, emitted to the<br>amounts greater than 5.0%                   | 🗌 YES 🖾 NO 🗌 NA                 |  |  |  |  |
| a6         | Are                                                                                                                                                                                                                                                                       | emission increases five tons per year or grea                                                                                                                                                       | ter?                                                                        | 🔀 YES 🗌 NO 🗌 NA                 |  |  |  |  |
|            | If "Y<br>mod                                                                                                                                                                                                                                                              | ES," this checklist must be attached to a Form<br>ification of the facilities.                                                                                                                      | 1 PI-7 within ten days following th                                         | ne installation or              |  |  |  |  |
|            | [Not<br>cher                                                                                                                                                                                                                                                              | e: The notification shall include a description nical names, limit values, and a description o                                                                                                      | n of the project, calculations, data<br>f pollution control equipment, if a | i identifying specific<br>iny.] |  |  |  |  |
| a7         | Are                                                                                                                                                                                                                                                                       | emission increases less than five tons per ye                                                                                                                                                       | ar?                                                                         | 🗍 YES 🗌 NO 🔀 NA                 |  |  |  |  |
|            | If "YES," this checklist must be attached to a Form PI-7 and include a description of the project,<br>calculations, data identifying specific chemical names, limit values, and a description of pollution control<br>equipment, if any. (pick one):                      |                                                                                                                                                                                                     |                                                                             |                                 |  |  |  |  |
|            | Within ten days following the installation or modification of the facilities. The notification shall include a description of the project, calculations, data identifying specific chemical names, limit values, and a description of pollution control equipment, if any |                                                                                                                                                                                                     |                                                                             |                                 |  |  |  |  |
|            |                                                                                                                                                                                                                                                                           | By March 31 of the following year summaricalendar year.                                                                                                                                             | izing all uses of this permit by ru                                         | lle in the previous             |  |  |  |  |

<sup>&</sup>lt;sup>2</sup> Any upstream and/or downstream actual emission increases that result from a project for which this PBR is claimed need to be authorized appropriately. Any associated upstream and/or downstream emissions authorized as part of the PBR claim will need to be included as part of the total new or increased emissions, unless: 1) these emissions stay below current authorized emission limits; 2) there is not a change to any underlying air authorizations for the applicable units associated with BACT, health and environmental impacts, or other representations (i.e. construction plans, operating procedures, throughputs, maximum emission rates, etc.); and 3) this claim is certified via PI-7 CERT or APD-CERT. Notwithstanding the exclusion of any upstream and/or downstream emissions under this PBR claim, the total of all emission increases, including upstream and/or downstream actual emission increases, are required to be part of the PBR registration to determine major new source review applicability under Title 30 TAC Chapter 116. The emission increases associated with the PBR claim and all upstream and/or downstream actual emission increases may not circumvent major new source review requirements under 30 TAC Chapter 116.

## Texas Commission on Environmental Quality Title 30 Texas Administrative Code § 106.262 Permit by Rule (PBR) Checklist Facilities (Emission and Distance Limitations)

The following checklist is designed to help you confirm that you meet Title 30 Texas Administrative Code § 106.262 (30 TAC § 106.262) requirements. If you do not meet all the requirements, you may alter the project design or operation in such a way that all the requirements of the PBR are met or you may obtain a construction permit. The PBR forms, tables, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ), Air Permits Division Web site at, www.tceq.texas.gov/nav/permits/air\_permits.html.

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

|      | Check the Most Appropriate Answer                                                                                                                                                                                                                                                                                                                                                                   |                         |    |    |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----|----|--|--|--|--|
|      | Is a description or che<br>for the use of PBRs in                                                                                                                                                                                                                                                                                                                                                   | X YES 🗌 NO 🗌 N/A        |    |    |  |  |  |  |
| b1.  | Is this claim for const<br>chapter or for which a<br>be used to authorize e                                                                                                                                                                                                                                                                                                                         | YES X NO 🗌 N/A          |    |    |  |  |  |  |
| b2.  | Is this claim for any c<br>this chapter or author<br>used to authorize emi                                                                                                                                                                                                                                                                                                                          | f<br>e 🔲 YES X NO 🗌 N/A |    |    |  |  |  |  |
| c.   | Is the facility authorized under another section of this chapter or under a standard permit? If "YES," subsection (a)(2) and (3) of this section may be used YES [ to qualify the use of other chemicals at the facility.                                                                                                                                                                           |                         |    |    |  |  |  |  |
| a1.  | 1. Are facilities or changes located at least 100 feet from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the facilities or the owner of the property upon which the facilities X YES □ NO are located?                                                                                                                             |                         |    |    |  |  |  |  |
| a2.  | <ul> <li>Are new or increased emissions, including fugitives, emitted in a quantity less than five tons per year or in a quantity less than E as determined by using the equation E=L/K?<sup>1</sup> See Table 262 Figures 1 and 2. If "YES," the notification shall include a description of the project, calculations for all emissions being claimed X YES □ NO □ N/A under this PBR:</li> </ul> |                         |    |    |  |  |  |  |
| Chen | nical:                                                                                                                                                                                                                                                                                                                                                                                              | L value:                | D: | К: |  |  |  |  |
| a3.  | 3. Is this checklist attached to a Form PI-7 within ten days following the installation or modification of the facilities? <i>If "YES,"</i> the notification shall include a description of the project, calculations, and data identifying specific UYES INO X N/A chemical names, L values, and a description of pollution control equipment, if any.                                             |                         |    |    |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Any upstream and/or downstream actual emission increases that result from a project for which this PBR is claimed need to be authorized appropriately. Any associated upstream and/or downstream emissions authorized as part of the PBR claim will need to be included as part of the total new or increased emissions, unless: 1) these emissions stay below current authorized emission limits; 2) there is not a change to any underlying air authorizations for the applicable units associated with BACT, health and environmental impacts, or other representations (i.e. construction plans, operating procedures, throughputs, maximum emission rates, etc.); and 3) this claim is certified via PI-7 CERT or APD-CERT. Notwithstanding the exclusion of any upstream and/or downstream emissions under this PBR claim, the total of all emission increases, including upstream and/or downstream actual emission increases, are required to be part of the PBR registration to determine major new source review applicability under Title 30 TAC Chapter 116. The emission increases associated with the PBR claim and all upstream and/or downstream actual emission increases may not circumvent major new source review requirements under 30 TAC Chapter 116.

#### Title 30 Texas Administrative Code § 106.262 Permit by Rule (PBR) Checklist Facilities (Emission and Distance Limitations)

|                                                                         | Check the Most Appropriate Answer                                                                                                                                                                                                     |                                                      |           |                            |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|----------------------------|--|--|--|
| a4. Are one or more of<br>(Check all that appl                          | the following chemicals is hand<br>y) If "YES," answer the following                                                                                                                                                                  | lled for this registration<br><i>four questions.</i> | ?         | 🗌 YES X NO 🗌 N/A           |  |  |  |
| 🗌 acrolein                                                              | diazomethane                                                                                                                                                                                                                          | 🗌 hydrogen sulfide                                   | oz        | one                        |  |  |  |
| 🗌 allyl chloride                                                        | 🗌 diborane                                                                                                                                                                                                                            | ketene                                               | 🗌 per     | ntabornev                  |  |  |  |
| 🔲 ammonia (anhydrous)                                                   | diglycidyl ether                                                                                                                                                                                                                      | methylamine                                          | D pe<br>m | erchloromethyl<br>ercaptan |  |  |  |
| 🔲 arsine                                                                | dimethylhydrazine                                                                                                                                                                                                                     | methyl bromide                                       | 🗌 per     | rchloryl fluoride          |  |  |  |
| 🗌 boron trifluoride                                                     | ethyleneimine                                                                                                                                                                                                                         | 🗌 methyl hydrazine                                   | 🗌 ph      | osgene                     |  |  |  |
| 🗌 bromine                                                               | 🗌 ethyl mercaptan                                                                                                                                                                                                                     | methyl isocyanate                                    | 🗌 ph      | osphine                    |  |  |  |
| 🗌 carbon disulfide                                                      | 🗌 fluorine                                                                                                                                                                                                                            | 🗌 methyl mercaptan                                   | 🗌 ph      | osphorus trichloride       |  |  |  |
| 🗌 chlorine                                                              | formaldehyde (anhydrous)                                                                                                                                                                                                              | 🗌 nickel carbonyl                                    | 🗌 sel     | enium                      |  |  |  |
| Chlorine dioxide                                                        | 🗌 hydrogen bromide                                                                                                                                                                                                                    | nitric acid                                          | he        | xafluoride stibine         |  |  |  |
| 🗌 chlorine trifluoride                                                  | hydrogen chloride                                                                                                                                                                                                                     | nitric oxide                                         | 🗌 liq     | uefied sulfur dioxide      |  |  |  |
| Chloroacetaldehyde                                                      | 🗌 hydrogen cyanide                                                                                                                                                                                                                    | 🗌 nitrogen dioxide                                   | 🗌 sul     | lfur pentafluorid          |  |  |  |
| 🗌 chloropicrin                                                          | 🗌 hydrogen fluoride                                                                                                                                                                                                                   | 🗌 oxygen difluoride                                  | 🗌 tel     | lurium hexafluoride        |  |  |  |
| 🗌 chloroprene                                                           | 🗌 hydrogen selenide                                                                                                                                                                                                                   |                                                      |           |                            |  |  |  |
| Are all facilities are<br>600 feet from any o                           | located at least 300 feet from t<br>off-plant receptor?                                                                                                                                                                               | he nearest property line                             | and       | □ YES □ NO □ N/A           |  |  |  |
| Are the cumulative<br>or more authorizati<br>authorizations) less       | Are the cumulative amount of any of the following chemicals resulting from one or more authorizations under this section (but not including permit YES NO N/A authorizations) less than or equal to 500 pounds on the plant property? |                                                      |           |                            |  |  |  |
| Are all listed chemic<br>compliance with the<br>(49 Code of Federal     | Are all listed chemicals handled only in unheated containers operated in compliance with the United States Department of Transportation regulation YES NO N/A (49 Code of Federal Regulation, Parts 171-178)?                         |                                                      |           |                            |  |  |  |
| a5. Are there any chang<br>equipment?                                   | ges to or additions of any existing                                                                                                                                                                                                   | ng air pollution abateme                             | ent       | 🗌 YES X NO 🗌 N/A           |  |  |  |
| a6. Will there be any vis<br>atmosphere from ar<br>opacity in any six-n | sible emissions, except uncomb<br>ny point or fugitive source in an<br>ninute period?                                                                                                                                                 | ined water, emitted to t<br>nounts greater that 5.0% | he<br>%   | ☐ YES X NO ☐ N/A           |  |  |  |



| D (feet)      | K   | Value Description                                                           |
|---------------|-----|-----------------------------------------------------------------------------|
| 100           | 326 | E=maximum allowable hourly emission, and never to exceed 6 pounds per hour. |
| 200           | 200 |                                                                             |
| 300           | 139 |                                                                             |
| 400           | 104 |                                                                             |
| 600           | 65  |                                                                             |
| 700           | 54  |                                                                             |
| 800           | 46  | K=value from the table on this page. (interpolate intermediate values)      |
| 900           | 39  |                                                                             |
| 1,000         | 34  |                                                                             |
| 2,000         | 14  | D=distance to the nearest off-plant receptor                                |
| 3,000 or more | 8   |                                                                             |



#### Exemption § 106.472 Checklist (Previously Standard Exemption 51) Organic Liquid Loading and Unloading

The following checklist is designed to help you confirm that you meet § 106.472, previously Standard Exemption 51 (STDX 51), requirements. <u>Any "no" answers indicate that the claim of registration may not meet all requirements for the use of Exemption § 106.472, previously Standard Exemption 51.</u> If you do not meet all the requirements, you may alter the project design/operation in such a way that all the requirements of the exemption are met, or obtain a construction permit.

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: <u>www.TexasEnviroHelp.org</u>

| Please Complete The Following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |       |       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|-------|--|--|--|
| Have you included a description of how this exemption claim meets the general rule for the use of exemptions (§ 106, Subchapter A checklist is available)?                                                                                                                                                                                                                                                                                                                                           | 🕅 YES        | □ NO  | □ N/A |  |  |  |
| Are all the facilities claimed for exemption specifically named in the general section of § 106.472, previously STDX 51?                                                                                                                                                                                                                                                                                                                                                                             | X YES        | □ NO  | □ N/A |  |  |  |
| [Note: This exemption has been interpreted to allow mixing or blending but not chemical reaction                                                                                                                                                                                                                                                                                                                                                                                                     | ion in tanka | ige.] |       |  |  |  |
| Is the equipment designed to prevent visible emissions?                                                                                                                                                                                                                                                                                                                                                                                                                                              | 🗙 YES        | □ NO  | □ N/A |  |  |  |
| Are all the chemicals to be loaded, unloaded, or stored described in §106.472 (previously STDX 51a-i)?                                                                                                                                                                                                                                                                                                                                                                                               | X YES        | □ NO  | □ N/A |  |  |  |
| Attach a list of the chemicals and identify the appropriate item of § 106.472, previously STDX 51 that applies.                                                                                                                                                                                                                                                                                                                                                                                      |              |       |       |  |  |  |
| Include additional supporting data. For example, a § 106.472, previously STDX 51(i), claim should identify initial boiling points of all compounds to be covered.                                                                                                                                                                                                                                                                                                                                    |              |       |       |  |  |  |
| Will aqueous ammonia solutions, hydrochloric acid, or acetic acid be vented through a water scrubber?                                                                                                                                                                                                                                                                                                                                                                                                | U YES        | □ NO  | N/A   |  |  |  |
| Are facilities loading, unloading, or storing butyric acid, isobutyric acid, methacrylic<br>acid, mercaptans, croton oil, 2-methyl styrene, or any other compound with an initial boiling point of<br>300 degrees F or greater listed in 40 CFR 261, Appendix VIII, located at least 500 feet from any<br>recreational area or residence or other structure not occupied or used solely by the owner or operator<br>of the facility or the owner of the property upon which the facility is located? | ☐ YES        | □ NO  | X N/A |  |  |  |
| List these compounds and show their handling location on an attached scaled plot plan.                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |       |  |  |  |

Save Form

**Reset Form** 

## Texas Commission on Enviromental Quality Storage Tank and Change of Service Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.478

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the rule number. The permit by rule (PBR) forms, tables, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ), Air Permits Division website at: www.tceq.texas.gov/permitting/air/nav/air\_pbr.html.

This PBR (§ 106.478) requires registration for storage tanks with a capacity of 25,000 gallons or greater and located in a designated ozone non-attainment area with the commission's Office of Air in Austin before construction begins. The registration shall include a list of all tanks, calculated emissions for each compound in tons per year for each tank, and a Table 7 for each different tank design. The facility may be registered by completing Form PI-7, "Registration for Permits by Rule," or Form PI-7-CERT, "Registration and Certification for Permits by Rule." This checklist should accompany the registration form.

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

| Ques                                                                                                                                                                                                       | Questions/Description and Response                                                                                    |                                                                                                                                                                                                         |                                                      |                                             |                                                                          |                     |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|---------------------|----------|
| Rule                                                                                                                                                                                                       |                                                                                                                       | Applicability                                                                                                                                                                                           | В.<br>1921 -                                         |                                             |                                                                          | 大学和学生的              |          |
| (7)                                                                                                                                                                                                        |                                                                                                                       | What is the capacity of                                                                                                                                                                                 | the tank?                                            | From 6                                      | ,300,000 to 10,500,0                                                     | 00                  | _gallons |
| (1)                                                                                                                                                                                                        |                                                                                                                       | Is the tank located at least 500 feet from the nearest recreational X YES NO area, residence, or other structure not occupied or used solely by the owner of the facility or the owner of the property? |                                                      |                                             |                                                                          |                     |          |
| Indicate the tank location from the nearest recreational area, residence, or other structure not occupied or used solely by the owner of the facility or the owner of the property: Greater than 3000 feet |                                                                                                                       |                                                                                                                                                                                                         |                                                      |                                             |                                                                          |                     |          |
| (2)                                                                                                                                                                                                        | <b>.</b>                                                                                                              | Is the true vapor pressu<br>than 11.0 psia?                                                                                                                                                             | ire of the                                           | compoui                                     | nd being stored less                                                     | X YES 🗌 NO          |          |
| Indicate the true vapor pressure: 10.5 psia                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                         |                                                      |                                             |                                                                          | psia                |          |
| (3)(A)<br>Will any storage tan<br>used to store compo<br>0.5 psia and less tha<br>floating cover or equ                                                                                                    |                                                                                                                       | Will any storage tank w<br>used to store compoun<br>0.5 psia and less than 1<br>floating cover or equiva                                                                                                | vith a capa<br>ds with a<br>1.0 psia b<br>alent cont | acity of 4<br>true vapo<br>e equipp<br>rol? | 0,000 gallons or more<br>or pressure greater that<br>ed with an internal | e XYES 🗌 NO [<br>an | ] N/A    |
| Check the type of tank and control method used:                                                                                                                                                            |                                                                                                                       |                                                                                                                                                                                                         |                                                      |                                             |                                                                          |                     |          |
| X Internal floating roof tank.                                                                                                                                                                             |                                                                                                                       |                                                                                                                                                                                                         |                                                      |                                             |                                                                          |                     |          |
| External floating roof tank using double seal technology with a primary mechanical shoe seal.                                                                                                              |                                                                                                                       |                                                                                                                                                                                                         |                                                      |                                             |                                                                          |                     |          |
|                                                                                                                                                                                                            | ] External floating roof tank using double seal technology with a primary liquid-mounted seal.                        |                                                                                                                                                                                                         |                                                      |                                             |                                                                          |                     |          |
|                                                                                                                                                                                                            | An existing open top floating roof tank having a vapor-mounted primary seal, which is undergoing a change of service. |                                                                                                                                                                                                         |                                                      |                                             |                                                                          |                     |          |

## Texas Commission on Enviromental Quality Storage Tank and Change of Service Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.478

| Questions/I<br>Rule         | Applicability                                                                                                                                                                                                                                                     |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (3)(B)                      | Does the floating roof or floating cover design of the tank X YES NO<br>incorporate sufficient flotation to conform to the requirements<br>of American Petroleum Institute (API) Code 650, Appendix C<br>or an equivalent degree of flotation?                    |  |  |  |  |
| Note: If using API Code 650 | g an equivalent degree of flotation, please describe how the method used is equivalent to<br>, Appendix C.                                                                                                                                                        |  |  |  |  |
| (4)                         | If the compounds have a true vapor pressure of 0.5 psia or less $X YES \square NO \square N/A$ at the maximum storage temperature, will each fixed or cone roof be equipped with a submerged fill pipe or use bottom loading?                                     |  |  |  |  |
| Indicate the lo             | pading method:                                                                                                                                                                                                                                                    |  |  |  |  |
|                             | ged fill pipe X bottom loading                                                                                                                                                                                                                                    |  |  |  |  |
| (5)                         | Is each fixed or cone roof tank not equipped with an internal X YES NO<br>floating roof painted chalk white, except where a dark color is<br>necessary to help the tank absorb or retain heat in order to<br>maintain the material in the tank in a liquid state? |  |  |  |  |
| (6)                         | Have the tank emissions been calculated using the methods X YES NO specified in Section 4.3 of the United States Protection Agency Publication AP-42                                                                                                              |  |  |  |  |
| (7)                         | If the capacity of the tank is 25,000 gallons or more, have you X YES NO provided Form PI-7 or Form PI-7-CERT as part of this registration request?                                                                                                               |  |  |  |  |
| Form P                      | I-7 X Form PI-7-CERT                                                                                                                                                                                                                                              |  |  |  |  |
| (8)                         | Are the chemicals or mixtures of chemicals to be stored limited X YES $\square$ NO to those shown in Table 478?                                                                                                                                                   |  |  |  |  |
| If "NO," ansu               | per the next question.                                                                                                                                                                                                                                            |  |  |  |  |
| (8)                         | Do mixtures of chemicals listed in Table 478 contain more than YES XNO<br>a total of 1.0% percent by volume of all other chemicals not<br>listed in Table 478?                                                                                                    |  |  |  |  |
| If "YES," the J             | facility does not qualify for this PBR.                                                                                                                                                                                                                           |  |  |  |  |
| Indicate the a              | ctual percentage by volume of all unlisted chemicals:                                                                                                                                                                                                             |  |  |  |  |
| Chemical Nai                | ne: Percent Composition (percent):                                                                                                                                                                                                                                |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                   |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                   |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                   |  |  |  |  |

TCEQ 10144 (APDG 5041v7, Revised 04/15) PBR Checklist 106.478 - Storage Tank and Change of Service This form is used by facilities subject to air quality permit requirements and may be revised periodically.

## Texas Commission on Enviromental Quality Storage Tank and Change of Service Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.478

| Questions/Description and Response                           |                                      | and the second |
|--------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Other Applicable Rules and Regulations                       |                                      |                                                                                                                  |
| Is this facility subject to 30 TAC §§ 115.112-119?           |                                      | YES X NO                                                                                                         |
| Why or Why Not: Cameron County not listed                    |                                      |                                                                                                                  |
| Is this facility subject to 30 TAC §§ 115.120-129?           |                                      | YES X NO                                                                                                         |
| Why or Why Not: Cameron County not listed                    |                                      |                                                                                                                  |
| Is this facility subject to 40 CFR Part 60, NSPS Subpart K?  | 27 <sup>-1</sup> 78-1 <sup>1-1</sup> | U YES X NO                                                                                                       |
| Why or Why Not: Construction 2017                            |                                      |                                                                                                                  |
| Is this facility subject to 40 CFR Part 60, NSPS Subpart Kb? |                                      | X YES 🗌 NO                                                                                                       |
| Why or Why Not: Construction 2017 therefore applicable       |                                      |                                                                                                                  |
| Is this facility subject to 40 CFR Part 60, NSPS Subpart NNN | 15                                   | U YES X NO                                                                                                       |
| Why or Why Not: Not a SOCMI facility                         |                                      |                                                                                                                  |
|                                                              |                                      |                                                                                                                  |

**Record Keeping:** There are no additional record keeping requirements other than the general requirements specified in 30 TAC § 106.8. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any question about the type of records that should be maintained, contact the Air Program in the TCEQ Regional Office for the region in which the site is located.

**Recommended Calculation Methods:** In order to demonstrate compliance with this PBR, the registrant may use the emission factors for each air contaminant from the EPA Compilation of Air Pollutant Emission Factors (AP-42), Fifth Edition, Volume I, Chapter 7: "Liquid Storage Tanks" at: www.epa.gov/ttn/chief/ap42/index.html. The registrant may also use the calculation method for storage tanks that store chemical compounds as described in the TCEQ guidance for "Storage Tanks" at: www.tceq.texas.gov/permitting/air/guidance/newsourcereview/tanks/nsr\_fac\_tanks.html.